Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Linear Algebra (2DBI00) 2020 Summary 3,99 €   Ajouter au panier

Resume

Linear Algebra (2DBI00) 2020 Summary

2 revues
 687 vues  20 fois vendu
  • Cours
  • Établissement

EN: Linear Algebra and Applications (2DBI00) is a course taught at Eindhoven University of Technology. It is an elective that is recommend for first-year Bachelor Computer Science and Engineering students. It is given in the fourth quartile and forms the basis on linear algebra. Linear Algebra and...

[Montrer plus]
Dernier document publié: 4 année de cela

Aperçu 2 sur 11  pages

  • 14 juin 2020
  • 22 juin 2020
  • 11
  • 2019/2020
  • Resume

2  revues

review-writer-avatar

Par: teun57 • 4 année de cela

Traduit par Google

Isabel makes the best summaries!!! Thank you!

review-writer-avatar

Par: robustefanadrian • 4 année de cela

avatar-seller
Linear Algebra (2DBI00) Summary Q4 2020
Class 1 Vectors and Matrices
A matrix is a rectangular table with numbers. A number is a 1 × 1 matrix. The size of a matrix is also called
the dimension of a matrix. A 2 × 3 matrix is also written as A є ℝ2x3. The notation of matrices is usually a
capital letter (A, B), that of a vector is a lower case letter or boldface (x, y) and constants are denoted with
lower case Greek letters (α, β). A vector is a matrix with just 1 column. Suppose a = and b = . The
2 2
inner product is a ⋅ b = a1b1 + a2b2. The length of a is ||a|| = √𝑎1 + 𝑎2 . The angle between a and b is
cos(a,b) = . Vectors a and b are orthogonal/perpendicular if a ⋅ b = 0. Trick: to find a vector
perpendicular to a, switch a1 and a2 from place and place a minus sign in front of one.
An application of matrices is recommender systems (Netflix) with movie ratings by predicting a value. This
can be done by comparing angles (how much alike) between vectors (ratings).
Matrices contain data points. Most of applied math/data science states that the data points are
columns and in probability and statistics, the data points are rows.
aij is the element of the ith row and the jth column of a matrix. See matrix A: a11 = 1, a12 = 2, a21 =
3, a22 = 4. xj is the jth element of the vector (in the jth row).
Adding and subtracting is simple: (A+B)ij = Aij + Bij and (A-B)ij = Aij – Bij. Example:
So you can only add/subtract matrices of the same sizes.
Scalar (= real number) multiplication is a real number times a matrix: (αA)ij = αAij. Ex.:
A matrix times a vector yields a new matrix. Let A be a m × n matrix and x
an n-vector. Then y = Ax is an m-vector. The 1st component is the inner
product of the 1st row of matrix with vector y1 = a11x1 + a12x2. Example:
A matrix-vector product is a linear combination (α1x1 + … +
αnxn) of columns of A. Example:
A matrix times a matrix gives a new matrix. Let A be a m × n
matrix and B a n × p matrix. Then C = AB is an m × p matrix. Ex.:
A matrix-matrix product can be seen as a number of matrix-vector products together. Useful trick: “leave
“Inner dimensions” have to agree (n must be equal). Result has outer dimensions m × p. space” for AB: [x x x]
A matrix-vector product (m × n matrix) is linear. A function is called linear if it satis- B so: [x x x]
fies two conditions: - A(x + y) = Ax + Ay for all x,y є - A(αy) = αAy for all y є and α є A I AB [x x] | [x x x]
Special matrices: The diagonal of a matrix are the elements a11, a22, …, ann.
Zero matrix (O2) Identity matrix I2 Diagonal matrix Upper triangular Lower triangular Symmetric




aij = 0 for all i,j 1’s on diagonal, rest 0 0’s out of diagonal aij = 0 if i > j aij = 0 if j > 1 aij = aji for all i,j
Zeros can be omitted for convenience: there are large matrices with lots of zeros which are called sparse.
For all A we have: A ∙ I = A, I ∙ A = A. For all A we have A ∙ O = O, O ∙ A = O.
Matrix-matrix multiplication is associative: (AB)C = A(BC), (αA)B = α(AB), (αA)x = α(Ax), A(Bx) = (AB)x.
Matrix-matrix multiplication is not commutative so in general AB ≠ BA. When AB = BA, B and A commute.
Multiplication with diagonal matrix: left-multiplication (in A ∙ B, A is a diagonal matrix)
works on the rows and right-multiplication works on columns. Example left-multi.:
The standard basis vectors has one 1 and for the rest only 0’s and are
denoted by ex , depending on the row the 1 is in. “e” is the vector with only ones.
Matrix times a standard basis vector: A ∙ jth standard basis vector = jth column of A. So Aej = Aj.
The transposed matrix AT is the matrix that changes rows in columns and columns in rows: (AT)ij = Aji. A
matrix for which AT = A is called symmetric. Rule for the transpose of a sum: (A + B)T = AT + BT. Rule for
the transpose of a product: (AB)T = BTAT. Thus (ABC)T = CTBTAT. Taking the transpose twice: (AT)T = A.
The length / norm of the vector x is ||x||2 = xTx. We cannot multiply 2 columns vectors, since the
dimensions do not match but we can multiply 2 column vectors if you transpose 1 (it is then a row vector).



1
By Isabel Rutten

, Powers of a matrix: A2 means A ∙ A. This is only possible when A is square. When adding two matrices and
taking the power of that, remember: (A + B)2 = A2 + AB + BA + B2 ≠ A2 + 2AB + B2.
A+AT is always symmetric but A must be square. ATA is always symmetric but A doesn’t need to be square.
Calculations on a computer can be done with Python, Julia, Matlab, R or Wolfram Alpha.




Class 2 Vector and matrix norms
The standard norm ||x||, the length of a vector, is called the 2-norm. Calculation: ↑.
This norm is derived from the standard inner product on , i.e. can be expressed in xTx.
A more general family of norms is the p-norms from which the 2-norm
can be derived. There is also the 1-norm and the ∞-norm:
and .
The different norms have different unit “circles”. 2-norm: circle. 1-norm: diamond. ∞-norm: square.
Vectors can be normalized/scaled such that a vector has p-norm = 1 by dividing the vector by its p-norm.
Vector norms have the following definition: A norm || ∙ || is a function with: 1. ||x|| ≥ 0;
2. ||x|| = 0  x = 0 (0-vector); 3. ||αx|| = |α| ||x|| if α є ; 4. ||x + y|| ≤ ||x|| + ||y|| (triangle inequality).
The matrix norms can be derived from the vector norms. If || ∙ || is a vector norm, then the derived matrix

norm is or, equivalently, since : . It turns out that:
=> Maximal => Maximal => No easy

column sum row sum formula
Usually, ||A|| means ||A||2 and ||x|| means ||x||2.
There are also matrix norms not derived for a vector norm, for example:
Matrix norms have the following definition: A norm || ∙ || is a function with: 1. ||A|| ≥ 0;
2. ||A|| = 0  A = 0 (0-vector); 3. ||αA|| = |α| ||A|| if α є ; 4. ||A + B|| ≤ ||A|| + ||B|| (triangle inequality).
From the definition follows an important property: ||Ax|| ≤ ||A|| ||x||. Applying this twice: ||AB|| ≤ ||A|| ||B||.
There is also the max-norm: .




2
By Isabel Rutten

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur IsabelRutten. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 3,99 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

71498 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
3,99 €  20x  vendu
  • (2)
  Ajouter