Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting HC.4 - elektronenmicroscopie 2,99 €   Ajouter au panier

Resume

Samenvatting HC.4 - elektronenmicroscopie

 39 vues  0 fois vendu
  • Cours
  • Établissement

Samenvatting HC.4 elektronenmicroscopie - vak: licht- en elektronenmicroscopie UU

Aperçu 2 sur 8  pages

  • 18 juin 2020
  • 8
  • 2019/2020
  • Resume
avatar-seller
Samenvatting EM HC.4
1. Qualitative description of image formation

The specimen needs to interact with and scatters the electrons if we want to see something.
The electron beam that comes in is called the incident electron beam. The outcoming beam
is called the scattered electron beam and consist of:
 Electrons that were unaffected by the specimen
 Electrons that were affected by the specimen
 Contains all the structural, chemical and other information about our specimen.

Scattering (verstooring): the process in which particles, atoms
etc. are deflected (afgebogen) as a result of collision
Diffraction: a deviation (afwijking) in the direction of a wave at
the edge of an obstacle in its path
 Diffraction is a very special
form of scattering. We say
diffraction when we talk about
wave characters and about
scattering if we are talking about particle properties.


Electrons are one type of ionizing radiation capable of removing the tightly bound, inner-shell
electrons from the attractive field of the nucleus by transferring some of its energy to
individual atoms in the specimen.

The electron is a low-mass negatively charged particle
 Easily deflected (afgebogen) by passing close to other electrons or the positive nucleus of
an atom.
 Because they have a mass and charge, there is a coulomb interaction with the nucleus

When a electrons passes a atom, two things can happen
1. Attraction towards the positive nucleus  scatters
the electrons through large angles up to 180 degrees
2. Electrons interacting with the negatively charged
electron cloud  results in angular deviations
(afwijkingen) of only a few degree




2. Signals generated

There are a few things that happen when a high-energy beam
of electrons interacts with a specimen.

The detectors we use and where we place it will determine
which signal we record!!!

,  Scanning electron microscopy (SEM)  topographical information
 Backscattered electrons (BSE)
 Secondary electrons (SE)
 Energy-dispersive X-ray spectrometry (EDS/EDX)  atomic composition
 Characteristic X-rays
 Electron energy-loss spectrometry (EELS)  detailed chemical info
 Inelastically scattered electrons
 For biological samples spectrum to complicated
 Transmission electron microscopy (TEM)  internal structure
 Elastically scattered electrons
 Direct beam

Transmission electron microscopy: you record electrons that do not deviate far from the
incident electron direction The microscope is constructed to gather these electrons primarily
(voornamelijk). TEM images give us information we seek about internal structure and
chemistry of the specimen.

You have forward- and backscattered electrons and forward scattering is the cause of most
of the signals used in TEM. As the specimen gets thicker, fewer electrons are forward
scattered and more are backscattered.

3. Electron scattering

 Scattering probability  the probability of scattering from the nuclei of atoms in the
specimen is determined by the following equation. The factors that effect this probalitity:
 Atomic number (Z)  lighter elements scatter less because they have less electrons
 Beam energy (E0)  high acceleration/energy causes less scattering because the
electrons are moving faster.
 Scattering angle ()  it’s harder to scatter a large angle zo most electrons will
scatter to lower angles.




 Scattering angle  how much the scattered electrons deviates from the incident direct
beam. Apertures or detectors are used to select and collect a certain fraction of scattered
electrons. It controls the signal we image!. Place and size of the apertures is important.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur annickkooij. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour 2,99 €. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

73918 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
2,99 €
  • (0)
  Ajouter