100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Wiskunde I-A €6,49
In winkelwagen

Samenvatting

Samenvatting Wiskunde I-A

 37 keer bekeken  3 keer verkocht

Samenvatting van 10 pagina's voor het vak Wiskunde I-A aan de UGent (theorie)

Voorbeeld 2 van de 10  pagina's

  • 1 april 2021
  • 10
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (3)
avatar-seller
jeanneherreman1
Wiskunde 1-A

Hoorcollege 1: functies van één veranderlijke

Het begrip functies:

- Definities
 Een functie is een wiskundige regel die met elk element x van IR hoogstens één
element y van IR associeert.
 Notatie: f : IR -> IR : x-> y
 x = de input (onafhankelijke variabele)
 y = de output (afhankelijke variabele)
- Expliciete / impliciete
 Expliciet = y is te schrijven als f(x), dan is de functie f expliciet gedefinieerd
(bv. y = 3-2x)
 Impliciet = x en y zijn met elkaar verbonden door een vergelijking van de vorm
F(x, y) = 0 (bv. y + 2x = 3)



Economische verbanden:

- Prijs en vraag -> lineair
P = a – bq (a, b > 0)
- Opbrengst en vraag -> kwadratische verbanden
TO = pq = (a-bq)q = aq – bq 2 = TO (q)
- Productiekost en productiehoeveelheid
TK = α + βq (α, β > 0)
α = vaste kosten
β = eenheidskost
- Winst en vraag
W = TO – TK = aq - bq 2 – (α + βq) = - α + (α – β)q - bq 2 = W(q)



Domein en beeld van een functie:

- Definities
 Het domein van een functie y = f(x) is de verzameling van alle x – waarden waarvoor
f(x) bestaat
 dom f = { x | f (x) ∈ IR }
 Het beeld van een functie y = f(x) is de verzameling van alle y – waarden die
voorkomen als beeld van een zekere x:
 bld f = { y | x: y = f (x) }
- Regels domeinbepaling
 Noemers mogen niet 0 zijn.
 Uitdrukkingen onder evenmachtswortels mogen niet negatief zijn.

, Hoorcollege 2: functies inverteren/ transformeren

Inverteerbare functies:

- Definitie
 Een functie f heet inverteerbaar indien er een functie g bestaat met dom g = bld f
zodat g(f (x)) = x voor alle x ∈ dom f. In dit geval noemt men g de inverse functie van
f en noteert men g = f −1.
- Eigenschappen
 Een functie f is inverteerbaar als en slechts als deze injectief is, d.w.z. als en slechts
als voor alle x 1, x 2 ∈ dom f de volgende bewering opgaat:
f( x 1 ¿=f ( x 2 ) =¿ x 1=x 2
 Als de functie f inverteerbaar is, dan
dom f −1 = bld f en bld f −1 = dom f
 Een functie is inverteerbaar indien elke rechte evenwijdig met de x-as de grafiek
van f hoogstens éénmaal snijdt.
 In een orthonormaal assenstelsel is de grafiek f −1 het spiegelbeeld van de grafiek f
t.o.v. de eerst bissectrice.
- Hoe berekenen?
 3 methodes:
 Tegenvoorbeeld
 f ( x 1) = f ( x 2 ¿ => x 1= x 2
 horizontale lijntest


Functies transformeren: ????

- Basistransformaties van y = f (x)
 Verticale verschuiving

 Horizontale verschuiving

 Spiegeling voer een coördinaatas

 Verticale rek en samendrukking


 Horizontale rek en samendrukking

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jeanneherreman1. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 48298 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  3x  verkocht
  • (0)
In winkelwagen
Toegevoegd