100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Statistiek 2 de jaar €6,49   In winkelwagen

Samenvatting

Samenvatting Statistiek 2 de jaar

 19 keer bekeken  1 keer verkocht

Samenvatting van lessen en boek

Voorbeeld 4 van de 47  pagina's

  • Ja
  • 24 mei 2021
  • 47
  • 2020/2021
  • Samenvatting
book image

Titel boek:

Auteur(s):

  • Uitgave:
  • ISBN:
  • Druk:
Alle documenten voor dit vak (10)
avatar-seller
pavitravandenhoven
1 Hoofdstuk 1: inductieve statistiek in onderzoek
1.1 Doel
Statistiek= hulpmiddel om gegevens te verzamelen, classificeren, samenvatten, organiseren,
analyseren, interpreteren. Het biedt ons regels om consequent en verantwoord conclusies te trekken
over wetmatigheden in gedrag
Beschrijvende= gegevens proberen te beschrijven en gegevens Inductieve= de gegevens
proberen samen te vatten, uitdrukken in grafieken, tabellen, gebruiken om uitspraken te
kengetallen zoals mediaan. kunnen maken.
1.2 Empirische cyclus
1) Vraag/probleemstelling
Blondines zijn even intelligent dan
brunettes
2) Operationaliseren= meetbaar maken
Brunettes zijn intelligenter dan blondines
3) Gegevens verzamelen steekproef trekking
IQ-af van groep brunettes en groep
blondines
4) Beschrijvende
IQ brunettes= 102, IQ blondines= 90
5) Inductieve
Is 102 significant hoger dan 90?
1.3 Probleem inductieve statistiek
Men is nooit in staat gegevens te verkrijgen van de complete populatie daarom steekproeftrekking.
Kernprobleem hierbij: welke garantie is er dat conclusies ook generaliseerbaar zijn voor de rest van
populatie?
Niet erg om geen sluitende zekerheid te hebben over de conclusies zolang er geweten is hoe groot de
onzekerheid is.= hoe groot is de kans dat conclusies fout zijn?
Bv. op basis van de steekproef kan er met 95 % zekerheid geconcludeerd worden dat 40 jarige moeders
meer een autoritaire opvoedingsstijl hanteren dan 25 jarige moeders.

1.4 Statistische significantie
Twee mogelijkheden bij hypothesetoetsing:

Gevonden verschil is eerder klein en te wijten aan toevallige Verschil is groot genoeg=
variabiliteit significant
1.5 Kansberekening


populatie A = populatie B




Steek-proef Steek-proef
>
A B

,Verschillen de scores voldoende om te concluderen dat x een invloed heeft op y, m.a.w. is er een
significant verschil?  ervan uitgaan dat er geen verschil (x heeft geen invloed op y)
Hoe groot is de kans dat er geen verschil is ?
kans groot dan is er wellicht geen echt verschil kans klein is wel een verschil
= geen significant verschil =wel een significantie verschil
1.6 Toetsen
De kans wordt berekend op basis van een kansverdelingen. Het al dan niet grote en kleine kans ligt op
5%=0.05

1.7 Misbruik van statistiek
Onduidelijke steekproef Gebrek aan context Interne validiteit: Laat het
Bv. “95% van de Belgen is tevreden Bv. “Duracell-batterijen gaan onderzoeksopzet toe om causale
over Activia” tot 5 maal langer mee conclusies te trekken?
conclusie: Statistiek is slechts een hulpmiddel en niet het doel op zich

1.8 Validiteit
Intern= Mate waarin we met een onderzoeksontwerp Extern= mate waarin resultaten van het
causale conclusies kunnen trekken over effect van OV op onderzoek kunnen gegeneraliseerd worden
AV over:
Voorwaarde: 4. (Onderzoek)situaties
1. Geen andere verklaringen voor gevonden verband 5. Methoden
2. Oorzaak moet in tijd voorafgaan aan gevolg 6. Tijd
3. Effect van OV op AV in voorspelde richting 7. Populaties
Alternatieve verklaringen uitsluiten bij experimenteel onderzoek:
Randomiseren Voormeting & nameting Controleren voor storende variabele
= methodologie: noodzakelijk om juiste conclusies te trekken, statistiek alleen is onvoldoende

2 Kansverdeling en kansberekeningen
2.1 Kansverdelingen
Frequentieverdeling= voorstelling waarin Kansverdeling= verdeling die de mogelijke uitkomsten van
elke waarde aangeduid wordt hoe vaak een variabele met de bijhorende kansen weergeeft.
deze voorkomt weergave hypothetische realiteit/data, kans
weergave geobserveerde realiteit/data,  lees je af hoe groot de kans zou zijn om een waarde te
frequentie observeren binnen een bepaalde range
lees je af hoe vaak een bepaalde waarde Kans = waarschijnlijkheid om een bepaalde gebeurtenis
geobserveerd werd in een steekproef te observeren, uitgedrukt met een getal tussen 0 en 1

Hoe meer observaties
binnen één steekproef
hoe meer de
frequentieverdeling zal
gaan lijken op de
theoretische kansverdeling.
Bij oneindige aantal
worpen identiek aan
elkaar.

, Gemiddelde Verwachte waarde




Deviatie




2.2 Steekproefgemiddelde
1) Populatie
2) Trek een steekproef van grootte n  2
3) Bereken het gemiddelde
4) Trek uit dezelfde populatie terug een steekproef van grootte n  2
5) Bereken van die steekproef het gemiddelde Je hebt dan een tweede gemiddelde dat waarschijnlijk verschilt
van het eerste
6) Blijf steekproeven van grootte n  2 trekken en bereken telkens het steekproefgemiddelde.
7) Al die gemiddelde in een grafiek steekproefverdeling (steekproefgemiddelde)
8) Als je daarvan het gemiddelde berekent dan valt dat (in de long run) exact samen met het gemiddelde van
de populatie waaruit je trekt. Voor elke steekproef ( X1, X2,…) uit eender welke populatie X geldt :
Gemiddelde van het steekproefgemiddelde = aan het populatiegemiddelde

Waarde steekproef Gemiddelde van steekproef kans Hoe groot is de kans dat een bepaalde
2-2 (2+2)/2=2 1/ 9 steekproefgemiddelde voorkomt?

2-4 (2+ 4)/ 2=3 1/ 9

2-6 (2+6)/2=4 1/ 9

4-2 (4+2)/ 2=3 1/ 9
4-4 ( 4+ 4)/2=4 1/ 9

4-6 (4+6)/2=5 1/ 9

6-2 (6+ 2)/2=4 1/ 9

6-4 (6+ 4)/2=5 1/ 9
6-6 (6+ 6)/2=6 1/ 9

, 2.3 Steekproefverdeling
Verwachte waarde= populatiegemiddelde μ

Gemiddelde van de steekproef is
een zuivere schatter van het
gemiddelde van de populatie
Schatter: we schatten met behulp
van het steekproefgemiddelde het
populatiegemiddelde
Zuiver: geen systematische
afwijkingen

(2 + 4 + 6)/3 = 4

(1/9 x 2) + (2/9 x 3) + (3/9 x 4) + (2/9 x 5) + (1/9 x 6) = 4

Standaardafwijking van steekproevenverdeling = standaardfout van gemiddelde X


SE X  X  Standaardafwijking van populatie
N
steekproefgrootte


Standaardafwijking van gemiddelde van X

Standard Error of standaardfout van het gemiddelde


Zelfde formule als deviatie alleen gem veranderen door
Formule Z- waarde:




2.4 Vorm van de steekproefverdeling
Centrale Limiet Theorema= wanneer je een groot aantal steekproefgemiddelden berekent vanuit een
kansverdeling die niet noodzakelijk normaal verdeeld is, dat de verdeling van al deze
steekproefgemiddelden bij benadering normaal verdeeld zal zijn. Hoe groter de steekproef, hoe meer de
normale verdeling benaderd wordt.
2.4.1 Voorwaarde
Populatie normaal Ja Ja nee

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper pavitravandenhoven. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  1x  verkocht
  • (0)
  Kopen