Summary Introduction to Research in Marketing (Fall)
17 keer bekeken 1 keer verkocht
Vak
Introduction To Research In Marketing (328049M6)
Instelling
Tilburg University (UVT)
Boek
Multivariate Data Analysis: Pearson International Edition
Summary of the course Introduction To Research in Marketing (fall) with the following subjects:
- Introduction, data exploration and visualization
- ANOVA
- Cluster analysis
- Factor analysis
- Logistic regression
- Conjoint analysis
- Multidimensional scaling
MMSR Trial exam + Answers 2024/2025 - Methodology for marketing and strategic management Radboud
Structureel Model (SEM) uitgewerkt in de software JASP
TIU Intoduction to Research in Marketing ALL lectures summary
Alles voor dit studieboek (19)
Geschreven voor
Tilburg University (UVT)
Marketing Management Or Marketing Analytics
Introduction To Research In Marketing (328049M6)
Alle documenten voor dit vak (6)
Verkoper
Volgen
dilemmasmit
Ontvangen beoordelingen
Voorbeeld van de inhoud
1. INTRODUCTION, DATA EXPLORATION AND VISUALIZATION
Total error What you observe = true value + sampling error + measurement error + statistical
framework error (you don’t observe). If you mess up the errors, your results will be biased
Statistics Characteristics of the sample (estimates the parameters)
Parameters Characteristics of the population
Coverage error Target population (voters) to frame population (everyone with telephone)
Sample error Frame population (everyone with telephone) to sample population (random digit)
Non-response error Sample population (random digit) to respondents (accept the call), biggest error
Post-strati cation Making your sample close to your population (e.g. when population 50% female
weights and sample 80% female), weighting this to come to better sample and outcome
Measurement scales Non-metric and metric (continuous), right statistical technique depends on this
Non-metric Nominal (categorical) and ordinal —> outcomes can be categorical (labels) or
directional (only measure direction of response, e.g. yes/no)
Metric Interval and ratio —> continuous scales not only measure direction or
classi cation, but intensity as well (e.g. strongly agree or somewhat agree)
Nominal Number only serves as label for identifying objects in mutually exclusive (not at
same time) and collectively exhaustive (at least one) categories (e.g. SNR,gender)
Ordinal Numbers are assigned to objects to indicate relative positions of characteristics
of objects, but not magnitude of di erence between them (e.g. preference, ranks)
Interval Numbers are assigned to objects to indicate relative positions of some
characteristics of objects with di erences between objects being comparable,
zero point is arbitrary (e.g. Likert scale, temperature Fahrenheit/Celcius)
Ratio Most precise scale, absolute zero point, has all advantages of other scales (e.g.
weight, height, age, income, temperature Kelvin)
Summated scales Measuring attitudes/feelings/beliefs that are more abstract and di cult than age
and income (multiple question to capture everything (reduce measurement error))
Validity and reliability Validity: measure what it’s supposed/wanted to measure? Does it make sense?
Reliability: is the outcome stable? Do results change if changing variables?
Statistical error Two outcomes: fail to reject null (null true) and reject null. Two types of error:
(hypothesis testing) - Type I: in reality nothing is going on (null true) but data shows something is
going on (reject null), false positive (doctor says man is pregnant, but not true)
- Type II: in reality something is going on and data shows nothing is going on,
false negative (female is pregnant, but doctor says she is not), setting power
P-value (alpha) Probability of observed data/statistic given that null hypothesis is true (< 0.05),
so what is the chance that we found the data that we did if null is true in reality
Exploration Always explore data before running any model (recode missings, reverse code
negatively worded questions, check range variables, check mutually consistency)
Visualization Exploration, understanding/making sense of data, communicating results (charts)
fi fi ff ff ffi
, 2. ANOVA
1. De ning objectives Test if there are di erences in the mean of a metric (interval/ratio) dependent
variable across di erent levels of one or more non-metric (nominal/ordinal)
independent variables (‘factors’), one-way/two-way ANOVA (experiments)
2. Designing study 2.1 Sample size
Determine e ect size with previous literature or using Cohen’s F
Signal = between groups
Noise = within a group
How smaller the e ect, how larger the sample needs to be and vice versa
Sensitivity analysis: how changes my sample size if e ect size changed?
2.2 Interactions
Interaction is the e ect of one variable on the DV is dependent on another
(interaction e ect), interaction between IVs (treatment/categorical variables)
2.3 Use covariates (control variables) by doing ANCOVA
Covariates a ect DV separately from treatment variables (IVs), requirements:
- Pre-measure (before outcome, otherwise they may intervene)
- Independent of treatment
- Limited number (< (0.1) * # observations - (# populations - 1)
3. Checking assumptions 3.1 Independence (most important)
Are the observations independent? —> when there is no pattern in the plot
A ects your estimates and standard errors
- “Between-subjects” design: each unit of analysis (row, respondent) sees
only one combination of IVs
- “Within-subjects” design: each unit of analysis sees all treatments
(counterbalance order of treatments, allow di erences)
3.2 Equality of variance/homoscedasticity (Levene’s test)
Is the variance equal across treatment groups? —> not reject null (> 0.05)
A ects your standard errors
What if homoscedasticity rejected?
1. If sample size is similar across treatment groups —> ANOVA robust (ok)
2. Transform dependent variable (e.g. take log(DV)) —> redo test
3. Add covariate —> ANCOVA, redo test
3.3 Normality (least important)
Is the DV approximately normally distributed? —> not reject null (> 0.05)
A ects your standard errors only if sample is small
What if normality rejected?
1. Large sample —> ANOVA robust
2. Small sample —> transform DV to make distribution more symmetric
4. Estimating model Calculation F-value (variation between groups larger than within groups?):
Mean sum of squares between groups (MSSB)
Mean sum of squares within groups (MSSW)
Large F (high signal/low noise): reject null of no di erences across groups
ff
fi ffffff ffffff ff ff ff
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper dilemmasmit. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.