100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

samenvatting mechanica van materialen

Beoordeling
1,0
(1)
Verkocht
9
Pagina's
83
Geüpload op
11-10-2021
Geschreven in
2020/2021

volledige samenvatting van de lessen en slides van mechanica van materialen












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
11 oktober 2021
Aantal pagina's
83
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Mechanica van materialen
H1 Scalaire, vectoren, ..
Wiskundig instrumentarium
Hoe geraak ik in het centrum van Brussel?
Antwoord: Loop 10 km ??
=> onvoldoende informatie!
We moeten ook de richting specificeren!
Een wiskundige grootheid met een grootte (amplitude), een richting en een zin
=> VECTOR


Vector

• Een grootheid met een amplitude en een richting, bijvoorbeeld plaats, kracht en
moment
• Wordt voorgesteld door een letter met een pijl erboven,
• De grootte of amplitude wordt voorgesteld door
• Bij dit onderwerp wordt een vector voorgesteld door A en zijn grootte (positieve
grootheid) als A




Vectorbewerkingen
Een vector vermenigvuldigen met en delen door een scalair
Product van vector A en scalair ais opnieuw een vector aA met grootte =IaAI maar met
eenzelfde of tegengestelde richting als vector A afhankelijk van het feit dat a positief dan wel
negatief is.
Indien a=0 dan is aA de nulvector.
Verder hebben we de volgende eigenschappen:
- (a+b)A = aA + bA
-a(A+B) = aA + aB
-a(bA) = (ab)A

,Vectoroptelling
Optelling van twee vectoren A en B levert een resultante R op, op grond van de
parallellogramregel
De resultante R kan worden bepaald met de driehoeksregel
Commutatieve eigenschap: R = A + B = B + A
Speciaal geval: de vectoren A en B zijn collineair (hebben beide dezelfde werklijn)




Vectoraftrekking
Speciaal geval van optelling, bijvoorbeeld
R’ = A – B = A + (–B)
Regels van vectoroptelling zijn van toepassing




Scalair product van 2 vectoren a en b

Is een scalair gegeven door 𝑎̅.𝑏̅ |a b cos|

Waarbij  de kleinste hoek is tussen a en b
Het scalair product is commutatief “ a.b=b.a “ en distributief “ aa. [bb+gc]= ab(a.b) + ag(a.c) “
Een belangrijke eigenschap is dat wanneer scalair product van 2 vectoren
a en b zijnde a.b=0 dan staan de 2 vectoren loodrecht op elkaar.
Het scalair product van een vector met zichzelf is gelijk aan het kwadraat van zijn lengte:


Een andere belangrijke eigenschap is dat de projectie van een vector u op de richting van
een eenheidsvector e gegeven wordt door: u.e
Hier volgt ook uit de elke vector u ontbonden kan worden in een component parallel aan
een eenheidsvector e en een component loodrecht op e, en dit volgens de regel:
u= (u.e)e + [u – (u.e)e]

,Vectorieel product van 2 vectoren is opnieuw een vector waarvan de grootte gegeven wordt

door waarbij ‘’ de kleinste hoek is tussen a en b




De grootte van axb is gelijk aan de oppervlakte van de parallellogram gevormd door de
vectoren a en b. De richting van deze nieuwe vector is loodrecht op het vlak gevormd door a
en b en wordt bepaald door de kurkentrekkerregel.




Het vectorieel product heeft de volgende eigenschappen:




Tripel Scalair product (gemengd product) van 3 vectoren u, v, w is gegeven door:



Indien het set van vectoren rechtshandig is dan wordt het volume van de parallellepipedum
gevormd door deze 3 vectoren gegeven door het gemengd product.
Om dit in te zien veronderstellen we dat en de eenheidsvector is in de richting van (u x v).
De projectie van w op (u x v) is dan h=w.e

, Cartesische vectornotatie
Rechtsdraaiend coördinatenstelsel
Een cartesisch coördinatenstelsel wordt rechtsdraaiend genoemd als:

• De duim van de rechterhand in de richting van de positieve z-as wijst
• De z-as bij het 2D-probleem loodrecht uit het papier gericht zou zijn.




Beschouwen de vector v in een rechthoekig cartesisch assenstelsel Oxyz met als
basisvectoren het set eenheidsvectoren e1, e2, e3
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
3 jaar geleden

1,0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
jj92 Vrije Universiteit Brussel
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
44
Lid sinds
6 jaar
Aantal volgers
37
Documenten
32
Laatst verkocht
1 jaar geleden

1,0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen