100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting instrumentele analyse (prof Van Schepdael) €8,99   In winkelwagen

Samenvatting

Samenvatting instrumentele analyse (prof Van Schepdael)

 67 keer bekeken  0 keer verkocht

In dit document vind je een beknopte, maar volledige samenvatting van de cursus instrumentele analyse die gegeven wordt in het eerste semester van de tweede fase Farmaceutische wetenschappen door prof. A. Van Schepdael.

Voorbeeld 2 van de 12  pagina's

  • 10 november 2021
  • 12
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
irisvl
Methoden in het biofarmaceutisch onderzoek: instrumentele analyse (5SP)
H1: BASISBEGRIPPEN I.V.M. SCHEIDINGSTECHNIEKEN
- ontdekker chromatografie: Michael Tswett
- verschillende vormen: vloeistof/gas, zuil/planair, analytisch/preparatief en kwalitatief/kwantitatief
- retentie = weerhouden worden van stoffen door stat. fase, retentietijd (tR) = tijd die stof nodig heeft om detector te bereiken
- verdelingscoëfficiënt: K = Cs/Cm (als K groot -> migratiesnelheid klein)
- t0 = dood volume
- symmetrie factor: S = 0,05W/2d (W = piekbreedte) --> S < 1: staartvorming // S = 1: symmetrisch // S > 1: fronting
1,18(𝑡𝑅𝐵 − 𝑡𝑅𝐴 )
- resolutie: Rs = = maat voor scheiding tussen twee verbindingen --> Rs > 1,5: basislijnscheiding
0,5𝑊𝐴 + 0,5𝑊𝐵
𝑘′𝐵 tR −t0
- scheidingsfactor/selectiviteit: 𝛼 = [met k ′ = = vertraging] = verschil aan retentiegedrag tussen twee verbindingen
𝑘′𝐴 t0
𝑡𝑅 2
- efficiëntie -> theoretisch schotelgetal: 𝑁𝑡ℎ = 5,54 ( )
0,5𝑊
- HETP = L/N (height equivalent to a theoretical plate)
B
- Deemter vergelijking: H = A + u̅ + Cu̅
[H: HETP -> best zo klein mogelijk
A: Eddy diffusie -> constante, afhankelijk van partikeldiameter en vulling,
B: longitudinale diffusie -> afhankelijk van u̅,
C: weerstand tegen massatransport (uitwisseling)
en u̅: lineaire gassnelheid]
1 𝛼−1 𝑘′
- resolutievergelijking: 𝑅𝑠 = [ ][ ] √𝑁𝑡ℎ
4 𝛼 1+𝑘 ′
(zie figuren p. 13!!)

H2: GASCHROMATOGRAFIE
(schema gaschromatograaf zie p. 15)
GLC (gas-liquid): vloeibare stationaire fase <-> GSC (gas-solid): vaste stationaire fase
2.1 DRAAGGAS
- keuze bepaald door: chemische eigenschappen (Moet inert zijn!), prijs en aard van detector
- vrij van zuurstof -> oxidatie vermijden en van water -> hydrolyse vermijden
- veel gebruikt: Helium, Waterstof, Stikstof en Argon
2.2 INJECTOR
1. directe injector: (1-10μl) verdampt monster (50°C warmer dan kolom) -> monster meegesleurd door draaggas
2. splitinjector: (cap.) verdampt monster -> deel monster verloren door splitopening, rest meegesleurd door draaggas
3. splitless injecie: splitopening initieel dicht en kolom koud -> openen/verwarmen: solvent weggeblazen (toep. sporenanalyse)
4. on-column injectie: (cap.) kleine hoeveelheid vloeistof rechtstreeks op kolom aangebracht
5. statische headspace injectie: monster met oplosmiddel in flesje in verwarm waterbad -> evenwichtsinstelling -> deel
gasvormige ‘headspace’ geïnjecteerd in chromatograaf (toep. onderzoek residuele solventen, ethanol in bloed, afvalwater…)
*Wet van Henry: P = HX -> partiële gasdruk is evenredig aan molfractie in oplossing*
6. dynamische headspace injectie/’purge and trap analysis’: helium borrelt door flesje -> vluchtige stoffen meegesleurd op
adsorberende kolom en daar vastgelegd -> verwarmen: stoffen verder naar GC toestel (toep. grondmonster analyseren)
2.3 KOLOM (voorbeelden p. 25-26)
1. gepakte kolom: - materiaal: roestvrij staal/pyrex
- grootte: 1-3m lange spiraal, d = 0,125-6mm
- stationaire fase: partikels (d = 150-250μm) -> bv. diatomeenaarde
-> voorbehandeling: NAW, AW, AW-DMCS (silanolgroepen maskeren)
2. capillaire kolom: - materiaal: metaal of gesmolten kwarts (‘fused silica’)
- grootte: 5-100m lang patroon, d = 0,1 – 0,53mm
- stationaire fase geadsobeerd als film op binnenwand kolom
- WCOT (wall coated open tubular): vloeibare-/PLOT (porous layer open tubular): vaste stationaire fase
- stationaire fase: hoogkokende vloeistof (polymeer), lage viscositeit, inert en bedekkingsgraad 3-5%
- MAOT (max. allowable operating temperature): indien hier boven gegaan wordt kan bleeding optreden
- K = affiniteit voor stationaire fase (bep. door interacties verbinding-SF) = affiniteit voor mobiele fase (bep. door dampspanning)
- retentie maximaal indien polair + polair of apolair + apolair (voorbeelden p. 29-30)
-> selectiviteit van kolom komt overeen met polariteit
-> polaire kolommen: scheiding o.b.v. polariteit (H-bruggen)
-> apolaire kolommen: scheiding o.b.v. kookpunt
- kolomoven: isotherm -> tijdverspilling op het einde -> temperatuurprogramma (hoe hoger temperatuur, hoe sneller scheiding)
1

, 2.4 DETECTOREN (samenvatting p. 39)
(ruis: schommelingen door interferentie -> spikes: verwaarloosbare pieken, wander↗ en drift↘: sprongen in basislijn)
1. vlamionisatie detector (FID): vlam (H2 + O2) -> verbrandt alle stoffen -> ionen -> e-/stroom -> meet elektrische geleidbaarheid
-> signaal voor alle organische stoffen
2. katarometer (TCD): meet ∆Rweerstanddraad t.g.v. ∆T
3. electron capture detector (ECD): radioactieve bron ioniseert draaggas -> e- vrij -> stof vangt e- -> meet verlaging geleidbaarheid
-> signaal voor stoffen die elektronen kunnen vangen -> E.N. stoffen, bv. halogenen (meer selectief en gevoeliger)
4. vlamfotometrische detector (FPD): vlam -> licht uitgezonden -> door filters -> fotomultiplicatorbuis: licht -> stroom (gemeten)
-> specifiek voor zwavel, fosfor (en halogeenverbindingen)
5. stikstof-fosfor- (NPD)/ thermo-ionisatie detector (TID): selectieve FID o.w.v. verhitting rubidiumzout en lager debiet
6. massaspectrometer (GC-MS): ionen scheiden o.b.v. massa-ladingsverhouding (m/z)
-> meest ideale GC-detector o.w.v. hoge selectiviteit(gekoppelde techniek = hyphenation) (opstelling p. 40)
2.5 DERIVATISERING (overzicht p. 41!!!)
-> vluchtigheid, resolutie en gevoeligheid detectie nemen toe en staartvorming kan vermeden worden
-> silyleringsmiddelen: p. 42-43!!
2.6 TOEPASSINGEN (zie p. 44-50!!!)
- kwalitatieve analyse: o.b.v. (relatieve) retentietijd
- kwantitatieve analyse: zie BOT II

H3: DUNNELAAGCHROMATOGRAFIE (DLC/TLC)
Rf = (retardation-/retentie factor/) ratio to the front
3.1 ADSORPTIE ALS VERTRAGINGSMECHANISME (voor weinig of matig polaire stoffen)
- verzadigingsfenomeen: absorptieplaatsen gradueel gevuld -> bereiken plateauwaarde
- hogere temperatuur -> moleculen bewegen sneller -> minder steile curve en plateau sneller bereikt
- gekromde absorptie-isothermen: adsorptieplaatsen met lage en hoge affiniteit -> knik in curve (mog. verklaring: staartvorming)
- vereenvoudigd model TLC: adsorbens (vaste fase) (vaak silicagel) + solventmoleculen (mobiele fase) (S) + moleculen opgeloste stof (X)
εo = adsorptie-energie per opp.-eenheid voor bepaald adsorptiemateriaal -> affiniteit van S voor adsorbens
Eo = adsorptie-energie per opp.-eenheid voor bepaald adsorptiemateriaal -> affiniteit van X voor adsorbens
--> als εo << Eo dan zal er meer retentie optreden en omgekeerd als εo >> Eo dan zal er minder retentie optreden
--> de εo van een mengsel van solventen kan niet worden bepaald door optelling rekening houdend met hun verhouding
- absorbens = silicagel: kenmerken: witte stof, korrelgrootte 5-10µm en bevat silanolgroepen (licht zure eig.)
silanolgroepen: geïsoleerde- > H-gebonden- > gehydrateerde- > als siloxaan groep
--> activering door verwarmen bij: 100°C (geadsorbeerd water weg) of 400°C (water weg, maar -Si-O- i.p.v. ≡SiOH)
--> interacties: dipool-dipool, H-bruggen en zuur-base (zwak zure silanolen + basen)
- solventspecificiteit: ook interacties in mobiele fase tussen de te scheiden stoffen X en Y en solventmoleculen S
EoX < EoY: scheiding X en Y | EoX = EoY: geen scheiding X en Y | EoX = EoY + solventspecificiteit (interactie Y-S -> rententie Y↘): wel scheiding X en Y
3.2 NORMALE VERDELINGS ALS VERTRAGINGSMECHANISME
- dragermaterialen: o cellulosepoeder: natuurlijke cellulose behandeld met zuur zodat amorfe delen deels verwijderd zijn
o kiezelguhr (diatomeeënaarde): van kiezelwieren, vgl. met silicagel maar minder silanolgroepen
o silicagel: loopmiddel moet aangepast zijn zodat silanolgroepen grotendeels gemaskeerd zijn
- stationaire fasen: voor celluloseplaten -> ontmenging van loopvloeistof aan celluloselaag
voor kiezelguhr -> vooraf drenken in polaire stat. fase (bv. formamide), laten drogen en optrekken met organisch solvent
- bv. 2D TLC van aminozuren (p. 58-60): eerst horizontaal behandelen met zuur loopsysteem, nadien verticaal met basisch-
-> kleurreactie met ninhydrine: 1°AZ paars gekleurd, 2°AZ licht gekleurd en 3°AZ geen kleur
-> systeem I (zuur): effect basische polaire groep meer uitgesproken o.w.v. protonering (NH3+)
systeem II (basisch): effect zure polaire groepen meer uitgesproken o.w.v. ionisatie (COO-)
3.3 OMGEKEERDE FASE VERDELINGSCHROMATOGRAFIE (stationaire fase meer apolair dan mobiele fase!)
- silicagel/kiezelguhr als drager: stationaire fase = paraffine/undecaan
loopvloeistof = HoAc-CH3CN (voor silicaplaten) en Me2COCH3CN (voor kiezelguhr platen)
- chemisch gemodificeerde silicagel: gesilaneerde- (bv. scheiding vetzuren) en gebonden C8/C18 fase (bv. scheiding ftalaten)
3.4 APPARATUUR EN UITVOERING
1. dunnelaagplaat: a. silicagel G (met gips in calciumsulfaat binder) c. silicagel met fluorescentie-indicator (F/UV254)
b. silicagel H (zonder gips) d. HPTLC: high performance (betere kwaliteit)
2. monster aanbrengen: niet te hoge concentratie, microspuit i.g.v. kwantitatief werk, hoeveelheid afhankelijk van detectiegrens
keuze oplosmiddel: monster moet volledig oplossen, kookpunt niet te hoog en bij voorkeur apolair
diameter startvlek zo klein mogelijk en aanbrengen op 2cm van onderste rand
3. ontwikkelen van de plaat: in verzadigde/onverzadigde ontwikkelkamer
vlekken zichtbaar maken: fluorescentie (UV), absorbantie (UV), I2-dampen, verkolen, besproeien met specifiek reagens of densitometrie (p. 63)
4. berekenen van Rf: Rf = d/l (d = afstand die stof heeft afgelegd vanaf startplaats en l = afstand die solvent heeft afgelegd van start tot solventfront)

2

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper irisvl. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,99
  • (0)
  Kopen