100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting lesnotities statistiek deel 3 inductieve statistiek €4,49   In winkelwagen

Samenvatting

Samenvatting lesnotities statistiek deel 3 inductieve statistiek

 17 keer bekeken  0 keer verkocht

lesnotities van statistiek deel 3 inductieve statistiek met eigen aanvullingen en notities

Voorbeeld 4 van de 35  pagina's

  • 16 december 2021
  • 35
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (17)
avatar-seller
mara0309
DEEL 3 INDUCTIEVE STATISTIEK
= conclusies trekken over een volledige bevolking op basis van een steekproef van die
bevolking (steekproef op een correcte manier trekken!!)
Basistools van inductieve statistiek
 doel: op basis van steekproefgrootheden conclusies trekken over
populatiegrootheden
 inductieve statistiek: uitspraak over de mate van vertrouwen dat kan gehecht worden
aan conclusies getrokken uit steekproef
 2 benaderingen hiervoor:
 Betrouwbaarheidsintervallen
 Significantietoetsen



1. De systematiek van het toeval: kansrekenen
 ‘kans’ is de basis van statistische inductie: zoeken naar achterliggende logica of
regelmaat van een verschijnsel op basis van ogenschijnlijk willekeurige gevallen
 Alles wat we te weten komen uit een steekproef  een steekproefeenheid
 toevalssteekproef:
waarden van steekproefgrootheden zijn mee door toeval bepaald; individuele
uitkomsten per steekproef variëren, maar niet louter willekeurig
 kansrekenen beschrijft hoe steekproefgrootheden variëren bij herhaalde
steekproeftrekking (als toestand populatie constant)


Illustratie
 Een teerling (dobbelsteen) X heeft 6 waarden (Xi): uitkomstenruimte S: {1,2,3,4,5,6}
 Bij een niet getrukeerde teerling heeft elke waarde een gelijke kans om het resultaat
te zijn van een worp = 1/6
 toevalsverschijnsel:
particuliere uitkomst is onzeker, maar bij vele herhalingen geldt de wet van grote
aantallen ; als we dit heel veel herhalen, krijgen we regelmaat in hoe vaak elke
uitkomst naar voren komt; elke uitkomst is onzeker, maar als we dit veel herhalen
komt er regelmaat in het toeval
 regelmaat van toeval kan beschreven worden via een kansverdeling
 kansverdeling uitkomst 1 worp met 1 teerling:

,Als ik 1x werp, kan ik het resultaat niet voorspellen, als ik dit 2000x doe, komt er een
regelmaat in
 elke gebeurtenis heeft kans P(A)
 basisregels:
o 0  P(A)  1 (een kans kan niet negatief zijn en niet meer dan 1)

o P(S) = 1 (de kans dat we iets uitkomen, is 1)

 bij combinatie gebeurtenissen:
o P(niet A) = 1 – P(A)  als we de kans willen bepalen dat een gebeurtenis niet
A is, berekenen we: 1- de kans dat we die bepaalde uitkomst uitkomen
o P(A of B) = P(A) + P(B)  (een uitkomst die een combinatie is van twee
gebeurtenissen) als we de kans willen berekenen dat we ofwel A ofwel B
uitkomen, dan: de som van de afzonderlijke kansen
o P(A en B) = P(A) * P(B)  (als er een kans is dat we zowel A als B uitkomen)
BV: we gaan met twee dobbelstenen gooien, er is een kans dat we twee keer
de waarde “6” uitkomen; we vermenigvuldigen de twee kansen met elkaar



2. Kansvariabelen
 Definitie: variabele waarvan de waarde een numerieke uitkomst is van een
toevalsverschijnsel
 ook steekproefgrootheden zijn stochastische variabelen (cijfers uit een
steekproef zijn ook kansvariabelen)
 kans kan worden beschreven a.d.h.v. een kansdichtheidsfunctie f(x)
 dichtheidskromme beschrijft de kansverdeling van een continue
kansvariabele

,  kansen bepalen via oppervlakte onder de curve
 totale oppervlakte = 1
 p(x)  0 (de kansen op een bepaalde uitkomst zijn groter dan 0)




Illustratie
 gewicht volwassen Nederlanders




 gearceerd: kans dat willekeurige Nederlander tussen 75 en 80,5 kg weegt
 kansdichtheidsfunctie die ons aangeeft: als we een steekproef nemen van 1 persoon
uit die populatie, wat is dan de kans dat ik iemand trek tussen de 75kg en de 80.5kg



3. Steekproefverdeling
 Steekproefgrootheden zijn kansvariabelen
met bepaalde kansverdeling: steekproevenverdeling
(sampling distribution)
 Steekproevenverdeling: geeft weer hoe steekproefgrootheden variëren bij onbeperkt
aantal herhaalde steekproeftrekkingen (theoretische verdeling) uit dezelfde
populatie met dezelfde n
 Door toeval krijg je afwijkingen van steekproef tot steekproef; we gaan dus
gebruikmaken van de systematiek van het toeval (door hiermee te werken wordt de
grootte van de steekproef ook bepaald door toeval)
 Basis van statistische inductie: regelmatig en voorspelbaar patroon van
steekproevenverdeling (enkel bij toevalsverschijnselen)
 Uitgangspunt hier: Enkelvoudige Aselecte Steekproef (EAS)  we nemen de
steekproef in 1x op louter willekeurige trekking

, Voorbeeld:
 stel dat in populatie p = 0,60 (60% is voorstander van het mobiliteitsplan)
 stel dat 1000 EAS van 100 personen  1000 ^p ‘s (stel dat we 1000 aselecte
steekproeven zouden nemen van telkens 100 personen, dan heb ik 1000 schattingen
van de proportie die ik wil weten van de populatie) die verschillen van elkaar
 mogelijke (benadering van) steekproevenverdeling:




200 steekproeven geven aan dat 57% voorstander is van het mobiliteitsplan bv
Meeste steekproeven geven waardes rond de 0.6 aan, maar sommige ook niet


Basislogica inductieve statistiek
 via steekproefgrootheden populatiegrootheden (parameters) schatten
<= elke eenheid in populatie eenzelfde kans om in steekproef opgenomen te zijn
 we gebruiken daarvoor zuivere schatters:
verwachting van steekproevenverdeling (niet elke steekproef geeft de waarheid in
de populatie, maar gemiddeld wel)
= populatiegrootheid
 steekproevenverdeling bezit spreiding: gemeten via standaardafwijking
in vb.: 0,049
 95% van de steekproeven in [0,50 , 0,70]
 spreiding neemt af nmt. steekproefomvang groter
(en is ongevoelig voor de populatieomvang)
 Resultaten van een grote steekproef zitten meer in
de buurt van de populatiewaarheid
 Nooit uitspraken over een volledige bevolking doen

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper mara0309. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €4,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€4,49
  • (0)
  Kopen