Hoofdrekenen is handig en flexibel rekenen op basis van bekende getal relaties en
rekeneigenschappen.
Getalrelatie: positie in de telrij (positioneren), structureren binnen getallen (ontbinden,
splitsen, samenstellen) en relaties tussen getallen, analogieën (bij analogie rekenen 'denk' je
de nullen van de getallen weg zodat je kleinere getallen overhoudt) en steunsommen
gebruiken.
Rekeneigenschappen:
- verwisseleigenschap ((commutatieve (=verwisselbaar) eigenschap)): 12 + 30 = 30 + 12
- verdeeleigenschap ((distributieve eigenschap (=verspreiden)): 13 x 6 = 10 x 6 + 3 x 6
- inverse relatie optellen/aftrekken en vermenigvuldigen/delen (aftrekken is de inverse
relatie van optellen, delen de inverse relatie van vermenigvuldigen en worteltrekken de
inverse relatie van kwadrateren).
Drie vormen van hoofdrekenen bij + en –
Globaal drie vormen van hoofdrekenen (ze worden in deze volgorde aangeboden)
45 – 28 = (aanrijgen/aanvullen op de getallenlijn naar rechts springen, beginnen bij 28)
28 + 2 + 10 + 5 = doelgetal 45
Model bij rijgen is de lege getallenlijn
,Splitsend hoofdrekenen: getallen worden gesplitst in honderdtallen, tientallen en eenheden en deze
worden eerst afzonderlijk bij elkaar geteld of van elkaar afgehaald. Vervolgens komt alles weer
samen.
Splitsend optellen
36 + 28 =
Splitsen met tekorthandeling
30 – 20 = 10
6 – 8 = 2 tekort
10 -2 = 8
Splitsen met optelhandeling
30 – 20 = 10
10 + 6 = 16
16 – 8 = 8
Varia-aanpak compenseren
75 – 48 =
75 – 50 = 25
Ik heb er twee teveel afgehaald dus deze voeg ik weer bij 25:
25 + 2 = 27
56 + 39 =
56 + 40 = 96
Ik heb er één extra bijgedaan, deze moet ik er dus weer afhalen:
96 – 1 = 95
- Hoeveel moet ik erbij doen om op 62 uit te komen?
- Aanvullen is voordehand liggend bij bijna-verdwijn sommen.
60 – 45 = 15 want 15 + 45 = 60
Let op:
- Kinderen krijgen alle strategieën aangereikt, het gaat uiteindelijk om het kiezen van de
handigste oplossingsmanier voor een bepaalde opgave.
- De opbouw staat vast: eerst rijgen, dan splitsen, dan varia. Kinderen kunnen wel al eerder
gebruik maken van andere strategieën. Opbouw blijf je volgen om ook de wat zwakkere
rekenaar vast te houden.
1 Hoofdrekenen in groep 5-8
1.2.2 Kenmerken van een goede hoofdrekenaar
Om te kunnen hoofdrekenen is het van belang om de basisvaardigheden zoals optellen,
aftrekken, vermenigvuldigen en delen goed te beheersen, zodat je deze vlot kunt gebruiken. Je
moet kennis over rekenfeiten kunnen inzetten. Zo kun je bij het maken van een aftrekopgave ook
tot een oplossing komen door een optelling te maken, bijvoorbeeld: 68-29 uitrekenen door 29
+ ? = 68 uit te rekenen. Hoeveel moet je bij 29 doen om bij 68 uit te komen.
Naast vaardigheden en kennis speelt ook het hebben van een goed gevoel over hoofdrekenen
een rol. Na een aantal succeservaringen op het gebied van hoofdrekenen durven kinderen meer
op onderzoek te gaan in de wereld van de getallen. Om kinderen hierin te begeleiden kan een
leerkracht voorafgaand aan een hoofdrekenles de kinderen eerst in een korte mondelinge
gezamenlijke lesactiviteit laten oefenen met de basisvaardigheden. De leerkracht geeft de
kinderen ruimte om op eigen wijze tot een oplossing te komen en deze systematisch te
bespreken.
Je werkt met getalwaarden en niet met cijfers; de getallen worden bij het hoofdrekenen ‘in
hun waarde gelaten’. Voorbeeld:
1012-898= 1012-900+2.
Je maakt gebruik van rekeneigenschappen en getalrelaties.
- De verwisseleigenschap (16+47= 47+16; 28x3 = 3x28),
- De verdeeleigenschap (13x6 = (10x6)+(3x6)),
- De inverse relaties optellen/aftrekken en vermenigvuldigen/delen (bijvoorbeeld: 62-59=3,
want 59+3=62; 420:7=60, want 7x60=420) en combinaties daarvan;
Je steunt op een goed ontwikkeld getal gevoel een hechte kennisbasis van elementaire
rekenfeiten tot twintig en tot honderd;
Je weet dat er verschillende manieren zijn om tot een oplossing te komen. Niet iedereen
hoeft op dezelfde wijze tot een oplossing te komen.
Je hebt gevoel voor de grootte van getallen;
Je hebt zicht in de positie van een getal op de getallenlijn;
Je hebt inzicht in de verschillende structureringsmogelijkheden van een getal als
hoeveelheid;
Je hebt zicht op de verschillenden praktische betekenissen van getallen;
, Je kunt schakelen van eenheid, bijvoorbeeld bij het rekenen met hele getallen zoals miljoen
en miljard;
Je kunt gebruikmaken van passende tussennotaties al naar gelang de situatie, maar je rekent
voor een belangrijk deel uit het hoofd.
1.2.4 De zin en de plaats van het hoofdrekenen
Binnen een realistische visie op rekenen wordt uitgegaan van concrete situaties voor kinderen. Voor
het ene kind is dit een concrete situatie met materiaal en voor het andere kind zijn de getallen en het
getallensysteem al concreet. De start vanuit de context of het rekensysteem vindt plaats vanuit de
informele werkwijze die de kinderen daarbij hanteren. Tijdens de uitwisseling van oplossingen krijgen
kinderen mogelijkheden om op steeds hoger niveau van denken en handelen te gaan functioneren
waardoor het formele rekenen steeds meer binnen hun bereik komt.
Het hoofdrekenen – dat vooraf gaat aan het cijferen – heeft het rekenen tot en met 20 en 100 als
basis. In groep 3 leren de kinderen betekenis geven aan de getallen. Ze plaatsen getallen op de
getallenlijn, ordenen naar grootte en splitsen getallen, zodat er een netwerk van relaties ontstaat
binnen het getalsysteem tot 20 (en hoger).
Ook leren ze optellen als ‘erbij’ en ‘samen’, en aftrekken als ‘eraf’ en ‘verschil’ uitvoeren, toepassen
en noteren. Aan het eind van groep 3 en begin van groep 4 komt de brede oriëntatie op het
getallengebied tot 100 aan de orde. Vanuit die basis kan het hoofdrekenen voor kinderen verder
verkend worden.
Naast het hoofdrekenen komt het kolomsgewijze rekenen als voorloper van het cijferen en het
schattend rekenen aan de orde. Bij kolomsgewijs rekenen worden getallen gesplitst en wordt er
gewerkt van groot naar klein. Bij kolomsgewijs rekenen wordt er rijgend met getallen gerekend van
rechts naar links en worden deeluitkomsten hoofdrekenend samengevoegd.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper rosapenning. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,89. Je zit daarna nergens aan vast.