100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Econometrics €9,99   In winkelwagen

Samenvatting

Summary Econometrics

1 beoordeling
 156 keer bekeken  9 keer verkocht

Summary of Econometrics for BA3 Business Economics at the VUB.

Laatste update van het document: 2 jaar geleden

Voorbeeld 4 van de 185  pagina's

  • 26 februari 2022
  • 26 februari 2022
  • 185
  • 2020/2021
  • Samenvatting
Alle documenten voor dit vak (1)

1  beoordeling

review-writer-avatar

Door: maxihaiz • 2 jaar geleden

I like that it is very detailed but its easy to lose track and there is no index / table of contents. What do the yellow markings stand for?

avatar-seller
Madikan
Summary Econometrics Class 1


Linear Algebra
Regressand and Regressors
● In econometrics one has a dependent variable (the regresand) y and explanatory variables
𝑥! , … , 𝑥" (the regressor)
o 𝑦 = [𝑦! ⋮ 𝑦# ]𝑎𝑛𝑑 𝑋 = [𝑥!! … 𝑥!" ⋮ ⋱ ⋮ 𝑥#! … 𝑥#" ]
o In the following data matrix has n observations of the dependent variable
o And the n observations of the k explanatory variables
Introduction of a system of linear equations
● In econometrics one typically has a system of linear equations
o Underneath you can find a system of 3 linear equations with 4 variables
▪ {𝑦! = 𝑥!! 𝛽 + 𝑥!$ 𝛽 + 𝑥!% 𝛽 + 𝜀! 𝑦$ = 𝑥$! 𝛽 + 𝑥$$ 𝛽 + 𝑥$% 𝛽 + 𝜀$ 𝑦% =
𝑥%! 𝛽 + 𝑥%$ 𝛽 + 𝑥%% 𝛽 + 𝜀%
● You can write this system in a more ordered way, by using matrix notation
o Matrix notation:
▪ 𝑦 = 𝑋𝑏 + 𝜀
o Where:
▪ “n”
observations:
rows of the matrix X and elements of the vector y
▪ “k” variables: columns of the matrix X and the vector y
▪ “b”: k unknown parameters
▪ 𝜀: n error terms
● Definition matrix:
o It is a table of real numbers consisting of m rows and n columns, is denotes as 𝑚 × 𝑛
matrix
▪ A row vector is a matrix with only one row
▪ A column vector is a matrix with only one column
Basic matrix operations
● Matrix addition
o (𝐴 + 𝐵)𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗
o Where, commutativity and associativity apply:
▪ A+B=B+A
▪ (A + B) + C = A + (B + C)
● Scalar product of a matrix
o (𝑘𝐴)𝑖𝑗 = 𝑘𝐴𝑖𝑗
o The following properties hold:
▪ (k + l)A = kA + lA
▪ “k”(A + B) = kA + kB
▪ “k”(lA) = klA

● Matrix multiplication
o 𝑐)* = (𝐴𝐵))* = 𝐴) 𝐵* = ∑+#,! 𝐴)# 𝐵#*
o Where i= row and j= column
o The matrix product is associate and distributive with respect to addition:
▪ (AB)C = A(BC)
▪ A(A + C) = AB + AC

1

,Summary Econometrics Class 1


▪ (A + B)C = AC + BC
● Transpose
o Transpose swaps rows and columns
o The transpose of (𝑘 × 𝑙)- matrix A is denotes as 𝐴+ or A’ and is the (𝑙 × 𝑘)- matrix
where: (𝐴+ ))* = (𝐴)*)
o The following properties hold:
▪ (𝐴+ )+ = 𝐴
▪ (𝐴 + 𝐵)+ = 𝐴+ + 𝐵+
▪ (𝐴𝐵)+ = 𝐵+ 𝐴+ (keep in mind the order!)
● Vector
o If x is a 𝑛 × 1 column vector, then 𝑥 + is a 1 × 𝑛 row vector (transpose is applied here)
o 𝑥 + 𝑥 = ∑#),! 𝑥)$
● Norm of a vector
o The (Euclidean) norm of a vector x is defined as
▪ ‖𝑥‖ = (𝑥 + 𝑥)!/$ = (∑#),! 𝑥)$ )!/$
o This is often used to minimize a sum of squares
Special matrices
● Null matrix
o Is a matrix completely filled with zeros
● Square matrix
o Is a matrix with an equal number of rows and columns
o And a square matrix of order 1 is simply a number
● Symmetrix matrix
o Is a square matrix that coincides with its transpose
o 𝐴+ = 𝐴
● Diagonal matrix
o Is a square matrix with scalars on it the main diagonal and zeros elsewhere?
● Unit matrix
o Is a square (and diagonal) matrix with ones on the maid diagonal and a zero
elsewhere
o For dimension n it is written as 𝐼#
▪ 𝐼% = [1 0 0 0 1 0 0 0 1 ]
● Upper triangle matrix
o Is a square matrix with underneath the main diagonal zeros everywhere
● Lower triangle matrix
o Is a square matrix with above the main diagonal zeros everywhere

Linear independence and the rank of a matrix
● Definition linear independence
o The (row or column) vectors 𝑎! , . . , 𝑎. are linear independent if any linear
combination of 𝑎! , . . , 𝑎. (except of the zero combination is non-zero, i.e. if:
▪ ∑.*,! 𝜆* 𝑎* = 𝜆! 𝑎! + 𝜆$ 𝑎$ + ⋯ + 𝜆. 𝑎. ≠ 𝑂.
o For any combination of scalars 𝜆! , … , 𝜆. of which at least one is different from 0.
▪ 𝑂. is the 𝑙 × 1 null matrix
● If not, 𝐴! , … , 𝐴. are linearly dependent
o With other words if no combinations can be made to construct a vector in the matrix
▪ Then there’s linear independence


2

,Summary Econometrics Class 1


● We will see that it is important not to have linear dependent in the columns of X for
regression models
● Example:
o [6 1 2 ], ⌈0 1 0 ⌉, [3 0 1 ]
▪ These vectors are linear dependent
● Since, first column is equal 2nd columns + 2 times 3rd column
● Definition rank
o It is the maximum number of linear independent row or columns
● Important properties
o For a matrix A of order 𝑘 × 𝑙: rank(A) ≤ min (k,l)
o Rank(A) = rank(A𝐴+ ) = rank(𝐴+ A)
o Rank(AB) ≤ min(rank(A), rank(B))
● Example:
o What is the rank of: [2 − 1 0 − 1 1 1 ]?
▪ There can not be any linear combination written, so the rank is 2
o What is the rank of: [2 − 1 1 − 4 2 − 2 ]?
▪ Row 2 is a linear combination of row 1, by -2 times row2
▪ So, the rank is equal to 1
Inverse of a matrix
● Remember!
o That the inverse of a matrix only exists when the matrix is linear independent, with
other words full rank
o Hence, no row or column is a linear transformation of one other row or column
● See on how to calculate the inverse of the matrix in math 2 course
● Inverse of a non-singular (𝑛 × 𝑛)- matrix
o With other words, a matrix with a full rank
o Is denoted by 𝑋 /!
o Important property
▪ 𝑋 /! 𝑋 = 𝑋𝑋 /! = 𝐼#
● Inverse matrix times the regular matrix is equal the unit matrix
● Determinant of the square matrix
o In general case if a square matrix has a determinant different from 0. Then it means
that the matrix is invertible
o Example how to calculate 2*2 matrix determinant




o If you have 2 matrices that are both invertible, the following properties hold:
▪ (𝐴/! )+ = (𝐴+ )/!
▪ (𝐴𝐵)/! = 𝐵/! 𝐴/! (keep in mind the order!)
Pseudo-inverse of a matrix
● Explanation on why this matrix exists
o Sometimes there exist no inverse for example in an overdetermined system
▪ Picture for overdetermined system:
● Is when you have data all over the place, and you try to fit a linear
model through this data



3

, Summary Econometrics Class 1


● But you realize that there is no linear model that drives through all
the points
o So new approach is using the pseudo-inverse
● Definition pseudo-inverse of a matrix X
o 𝑋 0 = (𝑋 + 𝑋)/! 𝑋 +
o A pseudo inverse of m*n matrix is defined by the unique n*m matrix satisfying the
following 4 criteria’s
▪ 𝑋𝑋 0 𝑋 = 𝑋
▪ 𝑋 0 𝑋𝑋 0 = 𝑋 0
▪ (𝑋𝑋 0 )+ = 𝑋𝑋 0
▪ (𝑋 0 𝑋)+ = 𝑋 0 𝑋
Positive (semi-) definite
● Definition:
o A symmetric n*n matrix B is positive semi-definite
▪ If, for each n*1 vector 𝑎(≠ 0# ), quadratic form 𝑎+ 𝐵𝐴 ≥ 0
o It is positive definite if 𝑎+ 𝐵𝐴 > 0 for each vector 𝑎(≠ 0# )
▪ Positive semi-definite matrices are important to determine issues such as the
smallest covariance matrix among different estimators
● It’s used to see which of (say) two estimators has the lowest covariance
o Example when it is used:
▪ Suppose you have a model that is estimated by
▪ 𝛽123)#425 .647+ 7894267 𝑎𝑛𝑑 𝛽.647+ 4:71.9+6 36;)4+)1#
▪ You can show that Cov(Beta_ols) and Cov(Beta_lad) is positive semi definite
● This means that covariance matrix for Beta_lab is larger than that for
Beta_ols
● Hence, Beta_ols is also more efficient!




4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Madikan. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €9,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 81113 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€9,99  9x  verkocht
  • (1)
  Kopen