Experimental and Correlational Research (6461PI009)
Alle documenten voor dit vak (1)
Verkoper
Volgen
ShanavV
Voorbeeld van de inhoud
Week 1
Causality: Is there an effect? Phi Coefficient (φ): dichotomous + dichotomous
• Covariance: Variables have an association
• Directionality: Cause precedes effect (in time)
• Internal validity: Eliminate alternative explanations
Correlation (𝐴 × 𝐷 − 𝐵 × 𝐶)
𝜑=
Correlation: Is there an association between two √(𝐴 + 𝐵) × (𝐶 + 𝐷) × (𝐴 + 𝐶) × (𝐵 + 𝐷)
variables? 𝜑 = √𝜒 2 ÷ 𝑁 → 𝜒 2 = 𝜑2 × 𝑁
Scatterplots:
• Direction (positive/negative) Testing significance
• Strength (number of points on line) H0: ρ = 0, Ha: ρ ≠ 0, ρ < 0 or ρ > 0
r = r, 𝑟𝑠 , 𝑟𝑝𝑏 , or 𝜑
• Shape (linear/nonlinear, homo-/heterogenous)
• Outliers 𝑟√𝑁 − 2
𝑡=
√1 − 𝑟 2
𝑑𝑓 = 𝑁 − 2
APA citing: t(df) = …, P = … → t with 2 decimals and P
with 3. If P is smaller than 0.001, write P < 0.001
Calculating the Correlation
Covariance: The degree to which 2 variables covary, Effect size
but depends on the unit of measure. Statistical significance depends on N, r and α,
𝑆𝑥𝑦 = ∑((𝑥𝑖 − 𝑥̅ ) × (𝑦𝑖 − 𝑦̅)) ÷ (𝑁 − 1), therefore it’s important to calculate the effect size.
with 𝑥̅ = mean of 𝑥𝑖
The effect size r = r, 𝑟𝑠 , 𝑟𝑝𝑏 , or 𝜑, but they are hard to
Correlation coefficients, a standardized measure interpret.
Pearson r: quantitative + quantitative → linear 𝑟 2 is the coefficient of determination of variance
relationship between 2 variables between +1 and -1. accounted for.
𝑟 = 𝑆𝑥𝑦 ÷ 𝑆𝑥 𝑆𝑦 or The rule of thumb:
1 𝑥𝑖 − 𝑥̅ 𝑦𝑖 − 𝑦̅ ∑ 𝑍𝑥 𝑍𝑦
𝑟= × ∑( )×( )=
𝑁−1 𝑆𝑥 𝑆𝑦 𝑁−1
1. Write down x and y
2. Calculate 𝑍𝑥 and 𝑍𝑦 : 𝑍𝑥 = (𝑥𝑖 − 𝑥̅ ) ÷ 𝑆𝑥
3. For every row, do 𝑍𝑥 × 𝑍𝑦
4. Calculate r with 𝑟 = ∑ 𝑍𝑥 𝑍𝑦 ÷ (𝑁 − 1)
Spearman’s rho (𝑟𝑠 ): ordinal + ordinal → good for
outliers, as it is converted into ranks.
1. Write down x and y
2. Rank x and y in 𝑟𝑥 and 𝑟𝑦
3. Calculate 𝑍𝑟𝑥 and 𝑍𝑟𝑦 : 𝑍𝑟𝑥 = (𝑟𝑥 − 𝑥̅𝑟 ) ÷ 𝑆𝑥𝑟
4. For every row, do 𝑍𝑟𝑥 × 𝑍𝑟𝑦
5. Calculate r with 𝑟 = ∑ 𝑍𝑟𝑥 𝑍𝑟𝑦 ÷ (𝑁 − 1)
Point-biserial correlation (𝑟𝑝𝑏 ): dichotomous +
quantitative. Use same calculation as Pearson R.
𝑟𝑝𝑏 = √𝑡 2 ÷ (𝑡 2 + 𝑑𝑓), with 𝑑𝑓 = 𝑁 − 2
, Week 2
Regression enables you to predict one interval Standard error of the estimate
variable from one or more other variables. 1. Write down observed values: x and y
The predictor is the independent variable, x 2. Calculate predicted values: 𝑦̂ = 𝑏0 + 𝑏1 × 𝑥
The response/criterion is the dependent variable, y 3. Calculate error/residual: 𝑒𝑖 = 𝑦 − 𝑦̂ → best fit of
the data when minimized
Use of symbols 4. Calculate (𝑦 − 𝑦̂)2 = 𝑒𝑖 2
5. Calculate the sum: 𝑆𝑆𝑒 = ∑(𝑦 − 𝑦̂)2 = ∑ 𝑒𝑖 2
6. Calculate the mean squared error:
𝑀𝑆𝑒 = ∑(𝑦 − 𝑦̂)2 ÷ (𝑛 − 𝑝 − 1) = 𝑆𝑆𝑒 ÷ 𝑑𝑓𝑒
Simple linear regression
Regression model is based on a sample with a certain With P = number of predictors → In simple linear
range of x scores. regression P = 1
A simple linear regression: One predictor variable 7. Calculate the standard error of the estimate:
A multiple linear regression: 2+ predictor variables 𝑆𝑒 = √𝑀𝑆𝑒
Interpolation: make a prediction within the range
Extrapolation: make a prediction outside the range From sample to population
Statistical model
The regression equation always passes through 𝜇𝑦 = 𝛽0 + 𝛽1 × 𝑥, with variance 𝜎
(0, 𝑏0 ) and (𝑥̅ , 𝑦̅): 𝛽0 is estimated with 𝑏0
1. Calculate slope, the size of the difference in 𝑦̂ if x 𝛽1 is estimated with 𝑏1
increases by 1 unit: 𝑏1 = 𝑟 × (𝑠𝑦 ÷ 𝑠𝑥 ) 𝜎 is estimated with 𝑆𝑒
2. Calculate intercept/constant, the predicted value
of y when x = 0: 𝑏0 = 𝑦̅ − (𝑏1 × 𝑥̅ ) Significance testing
3. Calculate the prediction: 𝑦̂ = 𝑏0 + 𝑏1 × 𝑥 Hypothesis testing
H0: 𝛽1 = 0, Ha: 𝛽1 ≠ 0, 𝛽1 < 0 or 𝛽1 > 0
Standardized regression equation 𝑡 = 𝑏1 ÷ 𝑆𝐸𝑏1 , with 𝑑𝑓 = 𝑁 − 𝑃 − 1
Problem: When unit of measurement changes, 𝑆𝐸𝑏1 = 𝑆𝑒 ÷ (𝑆𝑥 × √𝑁 − 1)
regression equation also changes.
Solution: Use standardized regression equation Testing H0: 𝛽1 = 0 in simple regression = H0: ρ = 0
𝑍̂𝑦 = 𝑟 × 𝑧𝑥 Testing H0: 𝛽0 is done the same way, bus less useful.
Accuracy of prediction Confidence interval
Variance: Total = Model (explained) + error 𝑏1 ± 𝑡 ∗ × 𝑆𝐸𝑏1
(unexplained) 𝑡 ∗ is two-tailed critical t value with 𝑑𝑓 = 𝑁 − 𝑃 − 1
Sums of squares: 𝑆𝑆𝑦 = 𝑆𝑆𝑦̂ + 𝑆𝑆𝑒 = 𝑆𝑆𝑇 Use the website for the critical value of 𝑡 ∗, with
significance 0.025
Proportion explained variable is the part of the
variance that is systematic variance (VAF)
Total variance: 𝑆𝑆𝑦 = 𝑆𝑦2 × (𝑁 − 1)
𝑉𝐴𝐹 = 𝑆𝑆𝑚𝑜𝑑𝑒𝑙 ÷ 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑦̂ ÷ 𝑆𝑆𝑦
𝑉𝐴𝐹 = 1 − 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 ÷ 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 1 − (𝑆𝑆𝑒 ÷ 𝑆𝑆𝑦 )
For simple linear regression:
𝑉𝐴𝐹 = 𝑟 2
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ShanavV. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €7,49. Je zit daarna nergens aan vast.