100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Digital Methods theory €6,89
In winkelwagen

Samenvatting

Summary Digital Methods theory

1 beoordeling
 97 keer bekeken  5 keer verkocht

Samenvatting van alle theoretische lessen (de practica staat in een ander document)

Voorbeeld 4 van de 158  pagina's

  • 18 mei 2022
  • 158
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (10)

1  beoordeling

review-writer-avatar

Door: juliene • 2 jaar geleden

avatar-seller
mariederick1
DIGITAL METHODS (THEORY)




Marie De Rick & Britt Moens
(ook credits aan Victor Desmet)
2021-2022

,INHOUDSOPGAVE

1. digital methods: close reading, distant reading and common characteristics of big data 8


situating the course ............................................................................................................................................. 8


close reading (quali) ............................................................................................................................................ 9


distant reading (quanti) .................................................................................................................................... 10


readymade versus custommade data ............................................................................................................... 11


10 characteristics of big data sources ............................................................................................................... 11

big data ......................................................................................................................................................... 11

1. BIg.............................................................................................................................................................. 12

2. always-on .................................................................................................................................................. 13

3. nonreactive ............................................................................................................................................... 13

4. incomplete ................................................................................................................................................ 13

5. Inaccessible ............................................................................................................................................... 14

6. Nonrepresentative .................................................................................................................................... 14

7. Drifting ...................................................................................................................................................... 15

8. Algorithmically confounded ...................................................................................................................... 15

9. Dirty ........................................................................................................................................................... 16

10. sensitive .................................................................................................................................................. 16


Takeaways......................................................................................................................................................... 16


2. computational social science and open science 17


Computational communication science ............................................................................................................ 17


1. Opportunities of computational science for communication science ............................................................ 17

From self-report to real data ........................................................................................................................ 17

From self-report to real behavior. ................................................................................................................ 18

From lab experiments to studies of the actual social environment .............................................................. 21

From small-N to large-N ................................................................................................................................ 22



1

, From solitary to collaboratively .................................................................................................................... 24


2. challenges of computational science for communication science ................................................................. 25

Accessibility of data....................................................................................................................................... 25

Quality of big data (cf. lecture 1) .................................................................................................................. 26

Validity and reliability ................................................................................................................................... 26

Responsible and ethical conduct................................................................................................................... 28

Lacking skills and infrastructure .................................................................................................................... 29


3. Open science.................................................................................................................................................. 30

Computational social science, open science! ................................................................................................ 30

Why open science? ....................................................................................................................................... 30


conclusion.......................................................................................................................................................... 34


recap last week: open science ........................................................................................................................... 34

causes of the replication crisis ...................................................................................................................... 34


4. roadmap ........................................................................................................................................................ 35

Roadmap towards replicable computational social science ......................................................................... 35

Sharing your research design and hypotheses: preregistration ................................................................... 36

Sharing the data: open access to datasets .................................................................................................... 36


Make data reusable – reusable code! ............................................................................................................... 37


3. data visualization 38


Data visualization: Why?................................................................................................................................... 38

Are vaccinated persons more likely to be hospitalized for covid? ................................................................ 38


data science and data visualisation .................................................................................................................. 39


visual displays.................................................................................................................................................... 41

type of displays ............................................................................................................................................. 41


Cognitive Processing of data visualizations....................................................................................................... 42

cognitive processing ...................................................................................................................................... 42



2

, What happens when we see a visualization?................................................................................................ 43

attention ....................................................................................................................................................... 43

display schema .............................................................................................................................................. 44

domain knowledge ........................................................................................................................................ 44


Advantages of data visualization for cognitive tasks ........................................................................................ 45

why use visual displays? ................................................................................................................................ 45


cognitive science and principles of effective graphs ......................................................................................... 48

1. Do not trust your intuitions… .................................................................................................................... 48

2. Test the effectiveness of your display ....................................................................................................... 48

3. Task specificity .......................................................................................................................................... 49


Common uses of Graphs and visuals in computational science ........................................................................ 50

displays to illustrate data… ........................................................................................................................... 50

…But also displays to build algorithms .......................................................................................................... 50


4. Collecting data from the web – data scraping 51


intro ................................................................................................................................................................... 51


DATASCRAPING – WHAT IS THAT? .................................................................................................................... 52


COMMUNICATION SCIENCES EXAMPLES .......................................................................................................... 53

Example 1 ...................................................................................................................................................... 53

Example 2 ...................................................................................................................................................... 54

Example 3 ...................................................................................................................................................... 54


OFTENTIMES: ‘TEXT’ DATA GENERATED BY USERS ONLY.................................................................................. 55


COMMON APPLICATIONS .................................................................................................................................. 55


GENERAL PRINCIPLE .......................................................................................................................................... 57


DATASCRAPING….WHAT ARE THESE DATA THAT WE TALK ABOUT? BUILDING BLOCKS DATA, CODE &

FORMATS .......................................................................................................................................................... 58

Data, coding and data formats ...................................................................................................................... 58



3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper mariederick1. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,89. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53022 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,89  5x  verkocht
  • (1)
In winkelwagen
Toegevoegd