100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Wiskundige modellen (YI1371) €8,99   In winkelwagen

Samenvatting

Samenvatting Wiskundige modellen (YI1371)

 107 keer bekeken  4 keer verkocht

Volledige samenvatting geziene leerstof (campus de nayer)

Voorbeeld 4 van de 54  pagina's

  • 20 mei 2022
  • 54
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (3)
avatar-seller
Studymotivation
Wiskundige modellen

Hoofdstuk 1: Differentiaalvergelijkingen
Hoofdstuk 2: Vectorfuncties
Hoofdstuk 3: Integralen

, Hoofdstuk 1: Differentiaalvergelijkingen
Differentiaalvergelijkingen: = een vgl. die een verband legt tussen een functie y(t) en haar afgeleiden. (t = tijd)
Vergelijking? = relatie tussen variabelen of een relatie tussen een veriabelen en zichzelf
2
bv. Parabool: y = ax + bx + c
Wet van Ohm: V(t) = I(t) R
Differentiaal? Zoals een afgeleide = verandering
bv. Positie, snelheid en versnelling
= relatie tussen een variabele en haar eigen verandering
bv. Luchtweerstand (Werkt je tegen)

Snelheidswijziging (zonder trappen bij het fietsen) (Min zorgt voor de afname
van de snelheid)
= feedback




Vormen van differentiaalvergelijkingen: manieren om een differentiaalvergelijking te beschrijven

1. Letterlijk: “verandering” als functie van de parameters
yʼ(x) = a(x) y(x) + b(x) (meestal gebruikt voor 1e orde)
Ex.: Geef een overzicht van alle types differentiaalvergelijkingen.




bv.
- Klassieke voorstelling van de vergelijkingen van orde 1
- Beginvoorwaarden maken de oplossing uniek (bv. Snelheid op moment 0)

Belang?
Differentiaalvergelijkingen die het gedrag van systemen beschrijven:
- In principe hebben deze systemen geen “keuze” in hun gedrag oplossing is meestal uniek
- startpositie/snelheid/situatie kan verschillen oplossing hangt af van “beginvoorwaarden” of
“randvoorwaarden”
Aantal rand/beginvoorwaarden = de orde van de vergelijking
Bv. Wet van Newton (F(t) =m x”(t)) → beginsnelheid & positie zijn nodig, begin-versnelling heeft geen invloed
Standaard vorm van lineaire differentiaalvergelijking van orde 1:
―> met 1 beginvoorwaarde heeft een unieke oplossing
yʼ(x) = a(x) y(x) + b(x), met y(x ) = c
2. Operator notatie:




3. Algemene vorm van een lineaire differentiaalvergelijking (2)
Lineaire diff. vgl. = een vgl. die een som is van termen,
eventueel vermenigvuldigd met een constante of andere functie.



a0 en a1 kunnen functies zijn, meestal zijn
dit getallen (= makkelijker oplosbaar)

,Oplossingsmethodes voor differentiaalvergelijkingen: hangt af van de vorm

1. Nakijken of een functie een oplossing is




2. Separabele vergelijkingen (orde 1)
NIET LINEAIR!

Nu wel een breuk
Veranderlijke apart schrijven
in




<


Niet maal 0 doen!




3. Algemene methode voor lineaire 1e orde probleem
Homogene vergelijkingen = een vgl. waarvan elke term y(x) bevat of haar afgeleiden.




:
bv. y”(x) - 2 yʼ(x) + 3 y(x) = 0
enkel functies met y(x)
Als y(x) de oplossing is, dan ook elk veelvoud “a y(x)”.
Gevolg: een homogene vergelijking heeft altijd y(x) = 0 als oplossing
Algemene methode, homogeen
Separabele vergelijking



Alle ʻyʼ links

Integraal




Cte a(x) dx
Exponent |y(x)| = e * e

H
= +- eCte
u




Algemene methode, particulier

Stap: 1. 2. 3. ―> “b(x) bestaat hier niet”


a, b en c kunnen verschillen,
andere oefening!




4. Operator methode voor homogene vergelijkingen (orde 2 en hoger)
5. Methode van de onbepaalde coëfficiënten (orde 2 en hoger)
Methode van de nulmakers

, Voorbeeld van de algemene methode:




HW: -x
✗ 2e
e y(x) + 2y(x) - 1 met lim y(x) = 1
✗ → 00
―> 1/2 + 1/2 e




2e orde vergelijkingen:
Algemene methode: Moet minstens 1 zijn anders niet van de 2e orde.
Az X




Stap 1: Homogene vergelijkingen met constante coëfficiënten:



= operator vorm.
Tussenstappen:
- (D - 1) y(x) = 0
P


↳ yʼ(x) - y(x) = 0 ―> yʼ(x) = y(x)
―> y(x) = A e
- (D + 3) y(x) = 0
:
yʼ(x) + 3y(x) = 0
D


Nodig om oefeningen te kunnen oplossen. 3✗
―> y(x) = B e
-




2 nulpunten dus 2 beginvoorwaarden.

Complex α +- βi :
(α + βi) x (α - βi) x
―> y(x) = A e +Be
EULER
αx αx
y(x) = A e cos(βx) + i A e sin(βx)
= Be
αx
cos(+ βx) + i B e
αx
sin(+ βx)
(A + B) e cos(βx) + (iA - iB) eαx sin(βx)
-
αx
-
C D

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Studymotivation. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 72042 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,99  4x  verkocht
  • (0)
  Kopen