Dit is een document met alle te kennen eigenschappen, definities, regels en methodes van de wiskunde van TEW. Dit document omvat dus ongeveer alle theorie van het vak van het tweede semester. Let op: hier staan de bewijzen nog niet in!
WISKUNDE MET
(BEDRIJFS)ECONOMISCHE
TOEPASSINGEN (TEW)
DEEL IV: INLEIDING
HOOFDSTUK 10: INLEIDING
1. Complexe getallen
1.1.Definities
Complexe getallen We definiëren i als het “getal” waarvoor geldt: i 2=−1
Met deze definitie wordt de verzameling van een
complexe getallen dan gedefinieerd als de verzameling
van alle lineaire combinaties van reële getallen en dit
getal i, of
C={ a+ b∗i|a ,b ∈ R }
In de notatie a+b*i noem men a het reële deel en b*i het
imaginaire deel.
Toegevoegd Men difinieert het toegevoegd complex getak van a+b*i
complex getal als
a+ b∗i=a−b∗i
Goniometrische of Een complex getal a+b*i kan in het complexe vlak
polaire vorm meetkundig voorgesteld worden door het punt met
Cartesische coördinaten (a,b), of
Poolcoördinaten ( r , φ ) bepaald door
{a=r cos φ met r ≥0 en 0 ≤ φ<2 π
b=r sin φ
Er geldt
a+ b∗i=r ( cos φ+i∗sin φ ) ;
Het rechterlid noemt men de goniometrische of polaire
vorm van het complexe getal.
1.2.Eigenschappen
Machten van i Voor de machten van i geldt:
2
i =−1
i 3=−i
4
i =+ 1
5
i =+i
…
Voor het omgekeerde van i geldt:
1
=−i
i
1
, Formule van De Voor elk complex getal met modulus 1 geldt
Moivre (cos φ+i∗sin φ)n =cos( nφ)+i∗sin ( nφ ) (n ∈ Z )
Vierkantsvergelijkin Een vierkantsvergelijking
gen met complexe a x +bx+ c=0
2
wortels Met negatieve discriminant, Δ=b 2−4 ac< 0
Heeft twee toegevoegde complexe wortels:
{
−b+ √ −∆∗i
x 1=
2a
−b− √−∆∗i
x2 =
2a
1.3.Regels/methodes
Bewerkingen met Optelling:
complexe getallen ( a+ b∗i ) + ( c+ d∗i )=( a+ c )+ ( b+d )∗i
Vermenigvuldiging
( a+ b∗i )∗( c +d∗i ) =( a c−bd ) + ( ad +bc )∗i
Machtsverheffing
(a+ b∗i) =⏟
n
( a+b∗i )∗( a+ b∗i )∗…∗( a+b∗i) (n∈ N 0)
n factoren
Toepassing De Om de n-de macht te bepalen van een willekeurig
Moivre complex getal, stap je best over op de goniometrische
vorm.
Als
a+ b∗i=r (cos φ+i∗sin φ)
Dan is
n n
(a+ b∗i) =r ∗¿
2. Getallenrijen (10.4)
2.1.Definities
Getallenrij Een getallenrij is een geordende (oneindige) verzameling
van getallen.
Notatie: { u n } staat voor u1 ,u 2 , u3 , … ,u n , …
Gedrag van een Men noemt een getallenrij { u n }
getallenrij
Convergent, indien nlim
→∞
un bestaat en eindig is
Divergent, indien nlim
→∞
un=±∞
Onbepaald, indien nlim
→∞
un niet bestaat
Rekenkundige Men noemt een getallenrij { u n } rekenkunidg, indien het
getallenrij verschil tussen opeenvolgende elementen van de rij
constant is.
Notatie: d=un−un −1 (n≥ 2)
Meetkundige Men noemt een getallenrij { u n } meetkundig, indien de
getallenrij verhouding tussen opeenvolgende elementen van de rij
cosntant is.
2
, un
Notatie: q= ( n ≥ 2 ) (rede )
un−1
Hyperharmonische Men noemt een getallenrij { u n } harmonisch, indien elk
getallenrij element van de rij een vaste negatieve macht is van de
index.
1
Notatie: un = p
, met p> 0.
n
Bij p = 1 spreekt men van een “harmonische” rij.
2.2.Eigenschappen
Rekenkundige De algemene term van een rekenkundige getallenrij { u n }
getallenrij kan gevonden worden als
un =u1+ ( n−1 ) d
Een rekenkundige rij is
Convergent indien d=0 ;er geldt dan nlim
→∞
un=u 1
Divergent indien d ≠ 0; er geldt dan nlim
→∞
un=± ∞
Meetkundige De algemene term van een meetkundige getallenrij { u n }
getallenrij kan gevonden worden als
n−1
un =u1∗q
Een meetkundige rij is
Convergent indien -1 < q < +1 ; er geldt dan
lim un=0 ;
n→∞
Convergent indien q = +1 ; er geldt dan nlim
→∞
un=u 1 ;
Divergent indien q > 1 ; er geldt dan nlim
→∞
un=±∞ ;
Onbepaald indien q -1 ; nlim
→∞
un bestaat dan niet
Hyperharmonische Een hyperharmonische rij { u n } met
getallenrij 1
un = ( p >0 )
np
Is steeds convergent.
Er geldt immers nlim
→∞
un=0
DEEL V: INTEGRALEN
H O O F D S T U K 1 1 : O N B E P A A L D E E N B E PA A L D E I N T E G R A L E N
1. Kernbegrippen
1.1.definities
3
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper emmavanhoestenberghe. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.