Samenvatting optica bijhorend bij boek Giancoli - Natuurkunde 2
Hoofdstuk 32 tot en met hoofdstuk 35
Spiegelvergelijking, microscopen, telescopen, interferentiepatronen, buiging, LCD, principe van Huygens, ... Gebruikt voor examen fysica 1e bachelor chemie aan UGENT. Er staan op een bepaalde pag...
H32 LICHT: REFLECTIE & BREKING
32.1 Stralenmodel voor licht
32.1.1 Inleiding
Licht: elektromagnetische golven
=> bewegende elektrische ladingen
=> transversale golven (elektrisch en magnetisch veld: loodrecht op elkaar = trilling loodrecht op
voortplantingsbeweging)
=> voorwerp is lichtbron of voorwerp zien we dor licht dat erdoor gereflecteerd wordt
spectrum: UV tot IR, zichtbaar licht rond 500 nm (ROGBIV)
=> zichtbaar licht rond 500 nm
=>UV-zichbaar-IR
=> indringdiepte in materie (behalve radiogolven)
=> E gaat met frequentie mee (f omhoog => E omhoog)
Golflengte van licht: 390 nm (violet) < ƛ <780 nm (rood)
=> c = ƛf
=> c=2,99799 x 10^8 m/s (vacuum, universele constante)
=> In materie: v < c (v = lichtsnelheid in materie)
32.1.2 Stralenmodel van licht (idealisering)
• gaat ervan uit dat licht in rechtlijnige banen beweegt (=lichtstralen)
• Beperken tot zichtbaar licht
• Lichtstraal is een manier om een zeer nauwe bundel licht voor te stellen
• Voorwerp zien = het licht bereikt onze ogen vanaf elk punt op het voorwerp
(geen afbuiging)
• Geometrische optica (hoeken + rechtlijnige stralen)
• We verwaarlozen wat er met licht aan randen van voorwerp gebeurd
32.2 Reflectie: beeldvorming door een vlakke spiegel
32.2.1 Terugkaatsingswet
Invallende lichtstraal op oppervlakte van een voorwerp:
breking, absorptie en reflectie
Invallende en gereflecteerde stralen liggen samen met de
normaal op het oppervlakte in hetzelfde vlak: hoek van
terugkaatsing is gelijk aan hoek van inval
32.2.2 Diffuse terugkaatsing
Invallende lichtstraal op ruw
oppervlak: wordt in alle
richtingen gereflecteerd =
diffusie reflectie
=> terugkaatsingswet blijft
gelden voor elk klein stukje van het oppervlak (normalen op oppervlakten
voor elk stukje wat anders aangezien ruw oppervlakte)
=> voorwerp te zien vanuit veel verschillende hoeken
=> vergeleken met speculaire reflectie (reflectie op een spiegel): licht
bereikt daar alleen je oog wanneer het zich precies bevindt waar de
terugkaatsingswet is voldaan
32.2.3 Beeldvorming door een vlakke spiegel
Elke verzameling uit elkaar lopende stralen die reflecteren tegen de spiegel
en het oog binnengaan lijken vanuit één punt achter de spiegel te komen
(=beeldpunt, stippellijnen op tekening).
=> Bij elk punt op het voorwerp is er een corresponderend beeldpunt
=> afleiding via congruente driehoeken (alle hoeken even groot & zelfde vorm)
1
, ∆ABD en ∆CBD rechthoekig + terugkaatsingswet
=> congruente driehoeken
=> AD = CD
=> beeldafstand di = voorwerpafstand d0
•Beeldafstand is de loodrechte afstand van de spiegel tot het beeld
•Voorwerpafstand is de loodrechte afstand van voorwerp tot spiegel
💡 Virtueel beeld kan je alleen zien, kan niet geprojecteerd
worden
32.3 Beeldvorming door sferische spiegels
32.3.1 Concave en convexe spiegels
convexe = holle spiegel: reflectie vindt plaats aan buitenoppervlak van de sferische vorm => midden van
spiegeloppervlak holt naar kijker toe (in winkel voor diefstal, breder gezichtsveld) ,
Concave = bolle spiegel: reflecterende oppervlakte bevindt zich aan binnenkant van de bol zodat het
spiegeloppervlakte van de kijker weg buigt (make up spiegel)
32.3.2 Brandpunt - brandpuntafstand
💡 we zijn bezig voor een CONCAVE spiegel
Als afstand van voorwerp groot is t.o.v afmeting van spiegel/lens
lopen invallende lichtstralen vrijwel // = paraxiale stralen (invallen
op klein voorwerp) ((∞: precies //)
=> worden gereflecteerd in 1 punt: brandpunt F
=> invallen sferische spiegels: komen niet allemaal in 1
punt samen => sferische spiegel geeft niet zo’n scherp
beeld als een vlakke spiegel maar als de spiegel klein is in
vergelijking met zijn kromtestraal zodat gereflecteerde
lichtstraal slecht een kleine hoek met de invallende lichstraal
maakt : brandpunt F
Hoek CBF = BCF hoek = ϑ
Hoofdas rechte lijn ⟂ op en gaande door het midden van het => ∆CBF gelijkbenig (omdat 2 van
spiegeloppervlak de hoeken gelijk zijn)
=> |CF| = |BF| ≈ | FA| (aanname dat
Brandpunt 1) Beeldpunt van een voorwerp dat op de hoofdas oneindig spiegelopp klein is i.v.t kromtestraal
ver ligt (bv. Beeld van de zon zou daar komen te liggen)
zodat hoeken klein zijn)
2) Waar invallende // stralen na reflectie bij elkaar komen
Brandpuntafstand Afstand tussen brandpunt en midden van de spiegel => CA = 2xFA = r
=> = r/2 (= op deze afstand
Kromtemiddelpunt Middelpunt van de bol waar de spiegel deel van uitmaakt
bevindt zich het beeld)
Kromtestraal Op figuur: r (stippellijn)
• Hoe krommer de spiegel, hoe slechte deze benadering en hoe waziger het beeld => ‘fout’ = sferische
aberratie
• Parabolische reflector: weerkaatst de stralen naar een perfect brandpunt (€€)
2
𝒇
, 32.3.3 Stralendiagrammen: beeld van een voorwerp dat niet ∞ ver ligt
O = object, stralen vertrekken op figuur vanaf O’: 3 types stralen
Straal 1 valt // in aan hoofdas en wordt weerkaatst door het brandpunt
Straal 2 valt in door het brandpunt en weerkaatst // aan hoofdas
Straal 3 valt ⟂ op oppervlak door kromtemiddelpunt C => weerkaatst
door C (ϑ=0)
Plaats van beeld construeren d.m.v deze types stralen
=> divergerende stralen vallen in op oog, convergerende stralen leiden
tot een wazig beeld
32.3.4 Spiegelvergelijking en vergroting
MAP (afleiding)
Laterale (=lineaire) vergroting m: hoogte beeld /
hoogte voorwerp
💡 minteken toegevoegd op grond van conventie
=> hi + als beeld rechtop staat
=> hi - als het t.o.v vw andersom staat
=> h0 +
Spiegelvergelijking => d0 + als voorwerp zich voor de spiegel bevindt = reële
ruimte (r>0)
=> di + als beeld zich aan andere kant van invallende
lichtstralen bevindt
=> m + voor rechtopstaand beeld
=> m - voor omgekeerd beeld
Virtueel, rechtop en
vergroot beeld
💡 wanneer het voorwerp zich tussen concave
spiegel en F ervan bevindt (d0<f) is het beeld
altijd rechtop en verticaal.
💡 altijd sferische abberatie, tenzij we
aannemen dat de afmeting van de spiegel klein
is in vergelijk met zijn kromtestraal
💡 als vw op plaats van beeld wordt gezet
komt het nieuwe beeld op het plaats van het
oude voorwerp (symmetrische
spiegelvergelijking)
3
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper hannahmeuleman. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.