4.4 Multivariate Data Analysis - Literature Summary
Samenvatting 4.4C Applied Multivariate Data Analysis o.b.v. het boek van Andy Field - Discovering Statistics Using IBM SPSS Statistics
Complete en uitgebreide samenvatting blok 4.4/M1.4
Alles voor dit studieboek (73)
Geschreven voor
Erasmus Universiteit Rotterdam (EUR)
Liberal Arts And Sciences
Intermediate Statistics II (EUCINT207)
Alle documenten voor dit vak (3)
Verkoper
Volgen
mcandradep01
Voorbeeld van de inhoud
Maria Andrade
Stats II Study Guide
Week 1: Revision Stats I & Dummy Coding
Revision Stats 1
Linear Regression
● Dependent variable → Y
● Independent variable(s) → X
● Function of linear regression:
○ B0 → population y-intercept
○ B1 → population slope coefficient
○ Xi → independent variable
○ Ei → random error
Eg: Interpretation of betas
● Eg: pricei= B0 + B1 · squaremeteri + B2 · bedrooms + Ei
● B0: the predicted house price when the amount of bedrooms is 0 and the square meters is 0
● B1: the increase in the predicted house price for every additional square meter given that the amount
of bedrooms remains constant
● B2: the increase in the predicted house price for every additional bedroom given that the amount of
square meters remains constant.
P-Values
● Alpha = 0.05 → how often we allow ourselves to make a mistake
● compare the p-value with alpha → if the p-value is lower than alpha you reject the Ho
Model Fit: To test model fit you have SST, SSR and SSM
Model Fit description Formula Variance exp
SST difference btw the observed total unstandardized variance
data and the mean of y
SSR Difference btw the observed unexplained unstandardized variances→
data and the model variation not accounted for in the model
, Maria Andrade
SSM Difference btw the men value of explained unstandardized variance →
Y and the model variation accounted for in the model
F-Ratio
● F-ratio: the ratio btw the standardized SSM and standardized SSR
○ Formula:
■ MSM Formula =
● MSM stands for the standardized explained variance
■ MSR formula =
● MSR stands for the standardized unexplained variance
○ When the F-ratio is high → the explained variance is high and the unexplained variance is low
R^2
● R2: the proportion of explained variance over total variance
○ Formula:
● Can be used to compare models, to see if one is better than the other
● The higher the R2 the more variance is explained
Assumptions of a Line
● If the assumptions are not met, then the inference of the results are invalid.
Linearity Independence of Normality (errors) Homoscedasticity multicollinearity
errors
meaning If yi is a linear The errors are Errors are normally Errors have equal 2 or + predictors are
function of the independent distributed variance highly correlated with
predictors each other
Check Residuals plot: X If time series 1)Histograms Zpred-Zresid plot VIF (>10) or tolerance
= ZPRED, Y = Durbin- Watson 2) PP/QQ plots Leven’s Test (<0.1) Average VIF
ZRESID 3)KS-SW test “much larger” than 1
If residuals are Not for cross 4)Skew & Kurtosis
symmetric sectional data
around 0
, Maria Andrade
+ 2)PP/QQ plots: Pp-plot: Equality of variance of Predictors explain the
magnify deviations in the errors same variance
middle & qq-plot : magnify
deviations in the tails
4) s/SEskewness K
/SEkurtosis
Fix Transform data/ Multilevel modeling SE’s are inflated, change SE’ inflates Remove variables
change model or clustered SEs through transform or Transform or
bootstrap bootstrapping
Outliers
● An outlier is an extreme in y
● Its cause of concern when:
○ >5% of data > 1.96 sd
○ >1% of data > 2.58 sd
○ >3.29sd
Influential Cases
● A case which influences any part of the regression analysis
● Its an extreme in x → pushes regression line
● Diagnostics:
○ Leverage → measures potential to influence regression
○ Mahalanobis distance → measures potential to influence regression
○ DFFIT(s) → difference in mean y including and excluding case
○ SDFBeta → change in one regression coefficient after exclusion
○ Cook’s Distance → the average of changes in all regression coefficients after exclusion
Dummy Coding
Dummy coding → categorical predictor with multiple categories
Steps:
1. Recode a variable into dummies
2. Number of dummies = categories - 1
3. A dummy is 0 or 1 for a particular category
4. Reference category is 0 for all dummies
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper mcandradep01. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.