100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Analyse - Deel 2: samenvatting Theorie €8,99   In winkelwagen

Samenvatting

Analyse - Deel 2: samenvatting Theorie

 54 keer bekeken  0 keer verkocht

Zeer uitgebreid en gedetailleerd document, bevat alle geziene en te kennen afleidingen en bewijzen.

Voorbeeld 4 van de 54  pagina's

  • 2 september 2022
  • 54
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (1)
avatar-seller
jefvanhoudt
Definities
Hoofdstuk 3: Stelsel differentiaalvergelijkingen

Stelling 3.1.1 – Existentie- en éénduidigheidsstelling

Zij A(t) en B(t) continu in interval I en t 0 ∈ I , dan heeft het beginwaardeprobleem

Y ( t )= A ( t ) ⃗ B (t) en ⃗
Y ( t ) +⃗ Y ( t 0 )=Y⃗0 slechts één oplossing
'




Definitie 3.2.1 – Lineaire onafhankelijkheid

De vectorfuncties ⃗
Y 1 (t) , ⃗
Y 2 ( t ) , … , Y⃗n (t ) zijn lineair onafhankelijk op interval I , indien
n

∑ ci ⃗Y i ( t )= ⃗0 op I , impliceert dat c i=0 ,i=1 , … , n
i=1




Definitie 3.2.2 – Lineaire afhankelijkheid

De vectorfuncties ⃗
Y 1 (t) , ⃗
Y 2 ( t ) , … , Y⃗n (t ) zijn lineair afhankelijk op interval I , indien er constanten c i
n
bestaan, niet alle 0, zodanig dat ∑ ci ⃗Y i ( t )= ⃗0 voor alle t ∈ I
i=1




Definitie 3.2.3 Fundamenteel stel oplossingen

De verzameling vectorfuncties {Y
⃗1 ( t ) , ⃗ Y n (t) } vormt een fundamenteel stel oplossingen voor
Y 2 (t ) , … , ⃗
het homogeen stelsel ⃗
Y ' (t )= A ( t ) ⃗
Y ( t ) op I indien
i. ⃗
Y i ( t )= A ( t ) Y⃗ i ( t ) ,i=1 , … , n
'


ii. ⃗
Y 1 (t) , ⃗
Y 2 ( t ) , … , Y⃗n (t ) lineair onafhankelijk zijn op I

Bewijs: We beschouwen de lineaire afhankelijkheid

 De voorwaarde is nodig:
Uit de definitie van lineaire onafhankelijkheid volgt dat er coëfficiënten c i bestaan – niet allen nul
– zodat
n

∑ ci ⃗Y i ( t )= ⃗0
i=1
Vermits dit geldt ∀ t ∈ I :
n

∑ ci ⃗Y i ( t0 ) =⃗0
i=1


Of m.a.w. de vectoren ⃗
Y 1 ( t0 ) , ⃗
Y 2 ( t0 ) , … , ⃗
Y n ( t 0 ) zijn lineair onafhankelijk.

,  De voorwaarde is voldoende:
Stel dat er constanten c i – niet allen nul – bestaan zodat:

n

∑ ci ⃗Y i ( t )= ⃗Y ( t )
i=1


Deze vectorfunctie is een oplossing van het homogeen stelsel vermits:

n n

Y ' ( t ) =∑ c i ⃗
Y ' i ( t )=∑ c i A i ( t ) Y⃗ i ( t )= A ( t ) Y⃗ ( t )
i=1 i=1


Zij voldoet bovendien aan de beginvoorwaarden ⃗ Y ( t 0 )=0⃗ en moet dus volgens de
eenduidigheidsstelling gelijk zijn aan de triviale oplossing. Daarmee is aangetoond dat de
vectorfuncties ⃗
Y 1 (t) , ⃗
Y 2 ( t ) , … , Y⃗n ( t ) voldoen aan de lineaire onafhankelijkheid.



Stelling 3.2.5 – Algemene oplossing van een homogeen stelsel.

Zij {Y
⃗1 ( t ) , ⃗ Y n (t) } een fundamenteel stel oplossingen van ⃗
Y 2 (t) , … , ⃗ Y (t )= A ( t ) ⃗
'
Y ( t ), dan wordt de
algemene oplossing van het homogeen stelsel gegeven door
n
Y ( t )=∑ c i Y⃗ i ( t )

i=1
met c 1 , c2 , … c n willekeurige constanten.



Stelling 3.3.1 – Algemene oplossing van een niet-homogeen stelsel.

Zij {Y
⃗1 ( t ) , ⃗ Y n (t) } een fundamenteel stel oplossingen van ⃗
Y 2 (t) , … , ⃗ Y ( t ) en ⃗
Y ' (t )= A ( t ) ⃗ Y p ( t ) een
gekende oplossing van ⃗
Y ( t )= A ( t ) ⃗
'
Y ( t ) +⃗
B (t) dan wordt de algemene oplossing van het niet-homogeen
stelsel gegeven door
n
⃗ Y p ( t ) + ∑ ci ⃗
Y ( t )=⃗ Y i(t )
i=1
met c 1 , c2 , … c n willekeurige constanten.

Bewijs: De vectorfunctie ⃗
U ( t )= ⃗
Y ( t ) −⃗
Y p ( t ) voldoet aan het homogeen stelsel immers:

U (t)=⃗
⃗ Y ( t )−⃗
' ' '
Y p (t)
¿ A ( t )∗⃗ Y (t)+⃗ B ( t )− A ( t )∗⃗
Y p ( t )− ⃗
'
B (t )
⃗ ⃗
¿ A ( t ) ( Y ( t ) −Y p ( t ) )
¿ A ( t )∗U ⃗ (t )

n
Uit ⃗
Y ' ( t )= ∑ c i Y⃗ i ( t ) volgt aan onmiddellijk hetzelfde
i=1

,3.3.2 De methode van de variatie van de constanten

We geven nu een algemene methode voor het vinden van een particuliere oplossingen ⃗Y p ( t ). Verwijzend
naar de matrixoplossing Z(t) kan de algemene oplossing van het homogeen stelsel ook geschreven
worden als




[]
c1
⃗ ⃗ c
Y h ( t ) =Z ( t ) ⃗
C met C= 2

cn

We zoeken dan een particuliere oplossing van het niet-homogeen stelsel in de vorm

⃗ ⃗ (t)
Y p ( t )=Z ( t ) C

Ingevuld in ⃗
Y ( t )= A ( t ) ⃗
'
Y ( t ) +⃗
B (t ) geeft dit de voorwaarde


Y p (t )= A ( t ) ⃗
'
Y p ( t ) +⃗
B (t)
' ⃗ ⃗ ' ⃗ (t)+ ⃗
Z ( t ) C ( t ) +Z ( t ) C ( t )= A ( t ) Z ( t ) C B (t )

Rekening houdend met Z' ( t )=A ( t ) Z ( t )
⃗ ' ( t )= ⃗
Z (t )C B (t )

C ( t )=Z (t) ⃗
' −1
B (t )
t
C ( t )=∫ Z ( ξ ) ⃗
−1
B ( ξ ) dξ
t0


Met t 0 ∈ I . De algemene oplossing van in ⃗
Y ' (t )= A ( t ) ⃗
Y ( t ) +⃗
B (t) wordt dus gegeven door


( )
t

Y ( t )= ⃗ C +∫ Z ( ξ ) ⃗
Y h ( t ) + Y⃗ p ( t )=Z ( t ) ⃗
−1
B ( ξ ) dξ
t0


Substitueren we hierin de waarde t=t 0, dan bekomen we


Y ( t 0 )=Z ( t 0 ) ⃗
C of ⃗
C=Z−1 ( t 0 ) ⃗
Y0

De oplossing van het beginwaardeprobleem wordt dus



( )
t
Y ( t )=Z ( t ) Z ( t 0 ) Y⃗ 0+∫ Z ( ξ ) ⃗
⃗ −1 −1
B ( ξ ) dξ
t0




Stelling 3.4.4 Oplossing van het homogeen stelsel

, Beschouw het homogeen stelsel ⃗
Y ' ( t )= A . ⃗
Y ( t ) met A een constante n x n – matrix voor elke
eigenwaarde x met bijhorden eigenvector ⃗
E is ⃗
Y ( t )= ⃗
E . e λt een oplossing.

Bewijs: Uit ⃗
Y ( t )= ⃗
λt
E . e volgt dat

Y ' ( t )=⃗
E λe
λt

Vermits A ⃗
E =λ ⃗
E geldt dat

Y ' ( t )=A ⃗
E e λt = A . ⃗
Y (t )
3.4.3 Oplossing van het niet-homogeen stelsel

Ook voor het vinden van een particuliere oplossing van een niet-homogeen stelsel


Y (t )= A Y⃗ ( t )+ ⃗
'
B (t)

Met A een n × n constante matrix, kunnen we op een efficiënte manier gebruik maken van de
eigenwaarden en eigenvectoren van A . We beschouwen enkel het geval dat A allemaal reële
eigenwaarden en lineair onafhankelijke eigenvectoren heeft. Substitutie van A=P J P−1 in
bovenstaande vergelijking geeft

Y ' (t )=P J P−1 Y⃗ ( t ) + ⃗
B (t)
P Y ( t )=J P Y ( t ) + P ⃗
⃗ ⃗
−1 ' −1 −1
B (t)

Stellen we dan

U ( t )=P ⃗
−1
Y (t )

C ( t )=P ⃗
−1
B (t )

Dan hebben we het oorspronkelijke stelsel teruggebracht tot

⃗ '
⃗ ( t ) +⃗
U ( t ) =J U C( t)

Dit nieuwe stelsel is ontkoppeld in n eerste orde differentiaalvergelijkingen die één na één afzonderlijk
kunnen opgelost worden. Uitgeschreven wordt dit stelsel immers

u'i ( t )=λi ui ( t ) +c i ( t ) , i=1 , … ,n

Met als algemene oplossing


( )
t
K i+∫ e
λ il −λ i l
ui ( t )=e c i ( ξ ) dξ
t0


En K i een constante. Hebben we een beginwaardenprobleem


Y ( t 0 )=Y⃗0

Dan kunnen deze voorwaarden onmiddellijk in rekening gebracht worden vermits


U ( t 0 )=P ⃗
−1
Y0

−λ i l
We stellen K i=e ui ( t 0 ) , i=1 , … , n.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper jefvanhoudt. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67866 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,99
  • (0)
  Kopen