100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Econometrie 1 (FEB22004) €6,99   In winkelwagen

Samenvatting

Samenvatting Econometrie 1 (FEB22004)

 19 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

Uitgebreide samenvatting van Econometrie 1 (econometrie EUR)

Voorbeeld 2 van de 12  pagina's

  • 8 september 2022
  • 12
  • 2020/2021
  • Samenvatting
avatar-seller
Week 1
Fitting line to scatter of data
In a scatter diagram with 𝑛 paired observations (𝑥! , 𝑦! ), 𝑖 = 1, … , 𝑛, we want to find the line
that gives the best fit to these points. The line is given by 𝑦 = 𝑎 + 𝑏𝑥
Terminology
𝑦: variable to be explained, dependent variable, endogenous variable
𝑥: explanatory variable, independent variable, exogenous variable, regressor, covariate
Deviation
𝑒! is the error that we make in predicting 𝑦! , so 𝑒! = 𝑦! − 𝑎 − 𝑏𝑥!
Ordinary least squares (OLS)
Minimalize the sum of squares of the errors, so minimalize 𝑆(𝑎, 𝑏) = ∑𝑒!" . By computing
#$ #$ ∑()! *)̅ )(-! *-.)
#%
= 0 and #& = 0, 𝑎 = 𝑦4 − 𝑏𝑥̅ and 𝑏 = ∑()! *)̅ )"
can be found.
Least square residuals
Given the observations and the corresponding unique values of 𝑎 and 𝑏, we obtain the
residuals 𝑒! . These have two properties: ∑𝑒! = 0 and ∑(𝑥! − 𝑥̅ )𝑒! = 0, so the mean of the
residuals is 0, and 𝑥! and 𝑒! are uncorrelated
Sum of squares
From 𝑎 = 𝑦4 − 𝑏𝑥̅ we get that 𝑦! − 𝑦4 = 𝑏(𝑥! − 𝑥̅ ) + 𝑒! . Then, the sum of squares of (𝑦! − 𝑦4)
is ∑(𝑦! − 𝑦4)" = 𝑏 " ∑(𝑥! − 𝑥̅ )" + ∑𝑒!" . In words: the total sum of squares (SST) equals the
explained sum of squares (SSE) plus the sum of squared residuals (SSR), SST = SSE + SSR
Coefficient of determination: 𝑅"
The coefficient of determination, denoted by 𝑅" , is defined as
"
" $$/ $$1 & " ∑()! *)̅ )" 2∑()! *)̅ )(-! *-.)3
𝑅 = 1 − $$0 = $$0 = ∑(-! *-.)"
= ∑() *)̅ )" ∑(- *-.)" , so 𝑅" is equal to the correlation
! !
coefficient between 𝑥 and 𝑦. It holds that 0 ≤ 𝑅" ≤ 1, and the closer it is to 1, the better
Data generating process (DGP)
The data is generated with the equation 𝑦! = 𝛼 + 𝛽𝑥! + 𝜀! , 𝑖 = 1, … , 𝑛. The 𝑥 variables are
fixed, 𝛼 and 𝛽 are chosen, and 𝑛 𝜀 are generated with a variance 𝜎 " . Now, the data points
will be around the line 𝛼 + 𝛽𝑥
Random variation
If only the data set (𝑥! , 𝑦! ), 𝑖 = 1, … , 𝑛 is known, the underlying values of 𝛼, 𝛽, 𝜎 and 𝜀! are
not known. 𝑎 and 𝑏 can be seen estimators of 𝛼 and 𝛽. And because 𝜀! is random, 𝑦! is
random, so 𝑎 and 𝑏 are also random. With 1 observation, 𝑣𝑎𝑟(𝑏) can be computed under
assumptions
DGP assumptions
A1. 𝑥! are not random (fixed) with ∑(𝑥! − 𝑥̅ )" ≠ 0 (they are not on a vertical line)
A2. 𝜀! are random with 𝐸(𝜀! ) = 0
A3. 𝑣𝑎𝑟(𝜀! ) = 𝐸(𝜀!" ) = 𝜎 " , homoskedastic
A4. 𝐶𝑜𝑟B𝜀! , 𝜀4 C = 𝐸B𝜀! 𝜀4 C = 0 ∀𝑖 ≠ 𝑗, no serial correlation of errors
A5. 𝛼, 𝛽, 𝜎 are fixed unknown numbers with 𝜎 > 0
A6. 𝑦! = 𝛼 + 𝛽𝑥! + 𝜀! , linear model
A7. 𝜀5 , … , 𝜀6 are jointly normally distributed
Under these assumptions, 𝑦! ~ 𝑁(𝛼 + 𝛽𝑥! , 𝜎 " )
Notation
𝛼, 𝛽, 𝜎 and 𝜀! are unknown, 𝑦! and 𝑥! are known observed data, 𝑎, 𝑏 and 𝑒! are known and
derived from 𝑦! and 𝑥!

, Statistical properties
) *)̅ ) *)̅
𝑏 can be written as 𝑏 = 𝛽 + ∑𝑐! 𝜀! , where 𝑐! = ∑() !*)̅ )) = ∑()! *)̅ ). It follows that 𝐸(𝑏) = 𝛽,
! ! !
7"
so 𝑏 is an unbiased estimator of 𝛽, and that 𝑣𝑎𝑟(𝑏) = ∑() *)̅ )" .
!
5 )̅ ()! *)̅ )
𝑎 can be written as 𝑎 = 𝛼 + ∑𝑑! 𝜀! , where 𝑑! = 6 − ∑() *)̅ )" . It follows that 𝐸(𝑎) = 𝛼, so 𝑎
!
is an unbiased estimator of 𝛼
Best linear unbiased estimator (BLUE)
With estimators, there is a bias-variance tradeoff. A estimator with the smallest MSE is
preferred, 𝑀𝑆𝐸 = 𝐸((𝑏 − 𝛽)" ) = 𝑣𝑎𝑟(𝑏) + (𝑏𝑖𝑎𝑠)" . The Gaus-Markov theorem says that
the OLS estimators 𝑎 and 𝑏 is BLUE. Linear means that they are a linear combination of 𝑦! ,
and best means 𝑣𝑎𝑟(𝑏) ≤ 𝑣𝑎𝑟(𝑏 ∗ ) for every LUE 𝑏 ∗ . This theorem holds if A1-A6 hold.
In the class of LUE, we cannot do better than OLS, but we can if we allow bias, or non-linear
estimators
𝑡-test
It holds that 𝑏 ≠ 0 even if 𝛽 = 0, but it needs to be checked if 𝛽 = 0. For that, a 𝑡-test is
used with 𝐻9 : 𝛽 = 0 vs 𝐻5 : 𝛽 ≠ 0. 𝐻9 is rejected if OLS 𝑏 is “far enough from 0”.
7"
Under A1-A7, 𝑏 ~ 𝑁(𝛽, 𝜎&" ), where 𝜎&" = ∑() "
. If we standardize 𝑏 we get
# *)̅ )
&*:
𝑧= ~ 𝑁(0,1). So, we reject 𝐻9 if 𝑧 is “far enough from 0”. With a 5%
7/<∑()! *)̅ )"
significance level, this means if |𝑧| > 1.96 ⟺ |𝑏| > 1.96 ∙ 𝜎& .
&*: >
𝜎& is unknown, so it is replaced with 𝑠, then 𝑡 = $1(&) ~ 𝑡(𝑛 − 2), where 𝑆𝐸(𝑏) =
<∑()! *)̅ )"
(standard error of 𝑏). So, we reject 𝐻9 if |𝑡| > 𝑐 ⟺ |𝑏| > 𝑐 ∙ 𝑆𝐸(𝑏). With a 5% significance
level, 𝑐 = 2 can be used
Estimating 𝜎
5
Use the estimator 𝑠 " = 6*" ∑𝑒!" as an unbiased estimator. 𝑠 is the standard error of
regression. The intuition for 𝑛 − 2 is that (𝑒5 , … , 𝑒6 ) are not independent, because the OLS
gives 2 restrictions: ∑𝑒! = 0 and ∑𝑥! 𝑒! = 0. From the first 𝑛 − 2 term, the last two follow
Other methods
The P-value can also be used to test the 𝐻9 . This is the probability that under the 𝐻9 to
obtain the observed test value or value more in the direction of 𝐻5 .
&*:
An interval can also be used. Take 𝑐 such that 𝑃(−𝑐 ≤ 𝑡 ≤ 𝑐) = 0.95, so −𝑐 ≤ $1(&) ≤ 𝑐.
Then the interval is 𝑏 − 𝑐 ∙ 𝑆𝐸(𝑏) ≤ 𝛽 ≤ 𝑏 + 𝑐 ∙ 𝑆𝐸(𝑏)
Prediction
The prediction is for 𝑦6?5 . Assume that A1-A7 hold for (𝑥! , 𝑦! ), 𝑖 = 1, … , 𝑛 + 1, but 𝑦6?5 is
not yet observed. The actual outcome will be 𝑦6?5 = 𝛼 + 𝛽𝑥6?5 + 𝜀6?5 , but the point
prediction is 𝑦Z6?5 = 𝑎 + 𝑏𝑥6?5 .
The forecast error is 𝑓 = 𝑦6?5 − 𝑎 − 𝑏𝑥6?5 = (𝛼 − 𝑎) + (𝛽 − 𝑏)𝑥6?5 + 𝜀6?5 . It holds that
5 ()$%# *)̅ )"
𝐸(𝑓) = 0 and 𝑣𝑎𝑟(𝑓) = 𝜎 " \1 + 6 ∑()! *)̅ )"
]. This variance is higher than the variance 𝜎 " of
the errors. That is because 𝑎 and 𝑏 are used instead of 𝛼 and 𝛽
Prediction interval
@ @
If A1-A7 hold true for 𝑖 = 1, … , 𝑛 + 1, then A%B(@) ~ 𝑁(0,1). And > ~ 𝑡(𝑛 − 2) with
&
5 ()$%# *)̅ )"
𝑠@" "
= 𝑠 \1 + 6 ∑()! *)̅ )"
]. So, a 1 − 𝛼 prediction interval for 𝑦6?5 is given by
B𝑎 + 𝑏𝑥6?5 − 𝑐𝑠@ , 𝑎 + 𝑏𝑥6?5 + 𝑐𝑠@ C, with 𝑐 such that𝑃(|𝑡| > 𝑐) = 𝛼 when 𝑡 ~ 𝑡(𝑛 − 2).
For a 95% interval, 𝑐 = 2 can be used

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper LeonVerweij. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67096 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,99
  • (0)
  Kopen