100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Opgeloste examenvragen mondeling Fysica: elektromagnetisme €7,48   In winkelwagen

Overig

Opgeloste examenvragen mondeling Fysica: elektromagnetisme

1 beoordeling
 191 keer bekeken  5 keer verkocht

Oplossing van de theorievragen die op voorhand door de prof (Guy van der Sande) worden gegeven. Samengevat in . Werd in dat jaar door meerdere studenten gebruikt en verbeterd. Volledig uitgetypt met afbeeldingen die de leerstof verduidelijken. Voor 2BA Bio-ingenieurs en 2BA/3BA biologen (keuzevak),...

[Meer zien]

Voorbeeld 4 van de 37  pagina's

  • 24 oktober 2022
  • 37
  • 2021/2022
  • Overig
  • Onbekend
Alle documenten voor dit vak (2)

1  beoordeling

review-writer-avatar

Door: elohemng • 1 jaar geleden

avatar-seller
kobetheylaert
Uitwerking examenvragen elektromagnetisme



Wet van Coulomb
𝑁𝑚2
• ⃗⃗⃗⃗𝐸 = 𝐾 𝑞1 𝑞2 2 ⃗⃗⃗⃗
𝐹 1𝑟 (𝐾 =
1
= 9,0 ⋅ 109 )
𝑟 4𝜋𝜀0 𝐶2
𝐶2
• 𝜀0 = permittiviteit van het vacuüm = 8,85 ⋅ 10−12 𝑁𝑚2
• Geldt enkel als de deeltjes in rust zijn tov elkaar (want bewegende ladingen creëren
magnetische velden)
• Coulombkrachten zijn actie-reactieparen → de krachten zijn altijd even groot, maar het
effect kan anders zijn




E-veld van een dipool op de as van de dipool (= y-as)
• 𝐸⃗ = 𝐸 ⃗⃗⃗⃗+ + ⃗⃗⃗⃗
𝐸−
𝐾𝑞 𝐾(−𝑞)
• 𝐸 ⃗⃗⃗⃗+ =
|𝑟 −𝑟+ |³
(𝑟 − 𝑟+ ) en ⃗⃗⃗⃗
𝐸− = |𝑟 |³ (𝑟 − 𝑟− )
−𝑟−
• Voor wat staan de positievectoren?
𝑠 𝑠
𝑟 = (0, 𝑦) ; 𝑟+ = (0, ) ; 𝑟− = (0, − )
2 2
𝑠 2 𝑠
⇒ |𝑟 − 𝑟+ | = √(𝑦 − ) = 𝑦 −
2 2

𝑠 2 𝑠
⇒ |𝑟 − 𝑟− | = √(𝑦 + ) = 𝑦 +
2 2
• Invullen bij het elektrisch veld (1 macht in de noemer valt weg door de (𝑟 − 𝑟+ ) en (𝑟 − 𝑟− ) in de
teller)
𝑠 2 𝑠 2
(𝑦 + 2) − (𝑦 − 2) 2𝑦𝑠 2𝑦𝑝 2𝑝
𝐸⃗ = 𝐾𝑞 [ ] ⃗1𝑦 = 𝐾𝑞 [ ] ⃗1𝑦 ≈ 𝐾 4
=𝐾 3
𝑠 2 𝑠 2 𝑠 2 𝑠 2 𝑦 𝑦
(𝑦 − 2) ⋅ (𝑦 + 2) (𝑦 − 2) ⋅ (𝑦 + 2)

Met 𝑝 = (0, 𝑞𝑠) = dipoolvector en 𝑦 ≫ 𝑠 (van daar de benadering)




Afbeelding hoort bij volgend
onderdeel (want punt op de x-as),
maar voor dit onderdeel kan je
een punt op de y-as voorstellen
1

,E-veld van een dipool op het middelloodvlak (= x-as)
• 𝐸⃗ = 𝐸 ⃗⃗⃗⃗+ + ⃗⃗⃗⃗
𝐸−
𝐾𝑞 𝐾(−𝑞)
• 𝐸 ⃗⃗⃗⃗+ =
|𝑟 −𝑟+ |³
(𝑟 − 𝑟+ ) en ⃗⃗⃗⃗
𝐸− = |𝑟−𝑟 |³ (𝑟 − 𝑟− )

• Voor wat staan de positievectoren?
𝑠 𝑠 𝑠 2
𝑟 = (𝑥, 0) ; 𝑟+ = (0, ) ; 𝑟− = (0, − ) ⇒ |𝑟 − 𝑟+ | = |𝑟 − 𝑟− | = √𝑥 2 + ( )
2 2 2
• Invullen bij het elektrisch veld

𝐾𝑞 𝑠 𝑠 𝐾𝑞 𝑝
𝐸⃗ = [(𝑥, − ) − (𝑥, + )] = (0, −𝑠) ≈ −𝐾
3
2 2 2 2 3
2 2 𝑥3
𝑠 𝑠
(𝑥2 + (2) ) (𝑥2 + (2) )

Met 𝑝 = (0, 𝑞𝑠) en 𝑥 ≫ 𝑠 (van daar de benadering)

Wet van Gauss
• Elektrische flux: de netto flow van een elektrisch veld: Φ𝐸 = 𝐸⃗ ⋅ 𝐴
o Voor een gesloten oppervlak geldt: ΦE = ∯𝑜𝑝𝑝𝐸⃗ ⋅ 𝑑𝐴
𝑞 1 𝑞
• Elektrisch veld van een puntlading in vacuüm: 𝐸⃗ = 𝐾 ⃗
1 = ⃗
1
𝑟2 𝑟 4𝜋𝜀0 𝑟² 𝑟
• Voor een puntlading in een gesloten oppervlak geldt dus:
𝑞
ΦE = ∯ 𝐸⃗ ⋅ 𝑑𝐴 = ΦE = ∯ 𝐾 ⃗ ⋅ 𝑑𝐴 1
1 ⃗𝑟
𝑜𝑝𝑝 𝑜𝑝𝑝 𝑟2 𝑟

1 𝑞 1 𝑞 𝑞
⇒ ΦE = 2
∯ 𝑑𝐴 = 2
(4𝜋𝑟 2 ) =
4𝜋𝜀0 𝑟 4𝜋𝜀0 𝑟 𝜀0

• Voor meerdere puntladingen krijgen we de integrale vorm van de Wet van Gauss:
∑𝑖 𝑞𝑖 𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛
ΦE = =
𝜀0 𝜀0

• De lokale vorm van de Wet van Gauss wordt gegeven door
𝜌(𝑟) 𝜕𝐸 𝜕𝐸 𝜕𝐸
div 𝐸⃗ (𝑟) = 𝜀 met div 𝐸⃗ (𝑟) = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 + 𝜕𝑧𝑧
0


Overgang tussen de 2 vormen van de Wet van Gauss
• Via Stelling van Green:
𝜌 𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛
∭ div 𝐸⃗ 𝑑𝑉 = ∯ 𝐸⃗ 𝑑𝐴 ⇔ ∭ 𝑑𝑉 =
𝜀0 𝜀0




2

,Wet van Gauss + overgang tussen de 2 vormen
Zie vraag 1

Elektrisch veld berekenen buiten een uniform geladen diëlektrische sfeer
𝑄
• Wet van Gauss buiten de sfeer (𝑟 > 𝑅): ∯ 𝐸⃗ ⋅ 𝑑𝐴 = 𝑛𝑒𝑡𝑡𝑜,𝑖𝑛
𝑜𝑝𝑝 𝜀0
• Linkerlid berekenen: ∯𝑜𝑝𝑝𝐸⃗ ⋅ 𝑑𝐴 = ∯𝑜𝑝𝑝𝐸 ⋅ 𝑑𝐴 (want E en dA zijn evenwijdig)

⇔ 𝐸∯ 𝑑𝐴 = 𝐸 ⋅ 4𝜋𝑟 2
𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛 𝑄
• Rechterlid berekenen: 𝜀0
=𝜀 (want alle lading zit in het Gauss-oppervlak)
0
• Stel beide kanten aan elkaar gelijk en vorm om naar 𝐸:
𝑄
𝐸(𝑟) =
4𝜋𝜀0 𝑟 2

• Je kan de sfeer in dit geval dus als een puntlading beschouwen (zelfde formule maar met 𝑞)

Elektrisch veld berekenen binnen een uniform geladen diëlektrische sfeer
𝑄
• Wet van Gauss binnen de sfeer (𝑟 < 𝑅): ∯ 𝐸⃗ ⋅ 𝑑𝐴 = 𝑛𝑒𝑡𝑡𝑜,𝑖𝑛
𝑜𝑝𝑝 𝜀0
• Linkerlid berekenen: ∯𝑜𝑝𝑝𝐸⃗ ⋅ 𝑑𝐴 = 𝐸 ⋅ 4𝜋𝑟 2
(analoog aan vorige puntje)
• Rechterlid berekenen: nu zit niet alle lading in het Gauss-oppervlak → gebruik lokale vorm
𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛 1 1 1 𝑄 𝑄 𝑟3
= ∭ 𝜌𝑑𝑉 = 𝜌𝑉𝑏𝑜𝑙,𝑟 = 𝑉 =
𝜀0 𝜀0 𝜀0 𝜀0 𝑉𝑏𝑜𝑙,𝑅 𝑏𝑜𝑙,𝑟 𝜀0 𝑅 3
• Stel beide kanten aan elkaar gelijk en vorm om naar 𝐸:
𝑄
𝐸(𝑟) = 𝑟
4𝜋𝜀0 𝑅³




3

, Gedrag ladingsverdeling in een geleider in elektrostatisch evenwicht
• Elektrostatisch evenwicht: geen elektrische stroom in de geleider → 𝐸⃗ = 0
• Er is dus ook geen elektrische flux in het Gauss-oppervlak: ΦE = 0
→ 𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛 = 0
• Alle excesladingen zitten dus op het oppervlak, maar ook door het oppervlak gaat geen
stroom → het elektrisch veld moet loodrecht op het oppervlak van de geleider staan
𝑄𝑛𝑒𝑡𝑡𝑜,𝑖𝑛 𝜂𝐴 𝜂
Φ𝐸 = = 𝐸𝐴 ⇔ = 𝐸𝐴 ⇔ 𝐸 =
𝜀0 𝜀0 𝜀0
(Met 𝜂 = oppervlakte ladingsdichtheid)




4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper kobetheylaert. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,48. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75632 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,48  5x  verkocht
  • (1)
  Kopen