Business intelligence -
Handelswetenschappen
1.0 INTRODUCTIE BUSINESS INTELLIGENCE
WAAROM IS DATA SCIENCE BELANGRIJK VOOR BEDRIJVEN?
Wet van de massale digitale opslag
De hoeveelheid gegevens verdubbelt op jaarbasis. Het aantal data dat we in 2020 gaan opslaan is
gelijk aan al de data die we zijn beginnen opslaan sinds 1960 tot 2019. De kosten voor het opslaan
van gegevens zijn elk jaar exponentieel goedkoper.
Big data
Big data is een brede verzameling van gegevens uit verschillende bronnen. Je hebt veel heterogene
bronnen die data uitzenden. Bedrijven moeten die data verzamelen en er iets mee doen.
Voorbeelden zijn machines met hun eigen ERP-systeem, telefoongesprekken van klanten, internet of
things&
Maslows hiërarchie van big data
Gegevens, informatie en kennis worden beschouwd als het gebied van wetenschap en
bewijsvoering. Wijsheid wordt beschouwd als het gebied van de beslissingen. Maslow zegt dus dat
data de basis is en dat die data aangewend kan worden om er zo informatie uit te halen. Die
informatie is omzetbaar in kennis en die kennis zal leiden tot wijsheid.
Data warehouses en data marts
Een bedrijf bestaat uit interne en externe data. Al die data wordt in een warehouse gestructureerd
en opgeslagen. Als er dan een bepaald probleem opgelost moet worden, dan kunnen ze uit de data
ware- house informatie halen. Die data is zelden in die vorm beschikbaar om direct een
bedrijfsprobleem op te lossen. Je zal de data moeten manipuleren.
,1
,Data lakes
Een data lake is een systeem of opslagplaats van gegevens die in het natuurlijke formaat opgeslagen
zijn. Het bestaat uit machine learning, analytics, on-premises data movement en real-time data
movement.
Data warehouse versus data lakes
Bij een data warehouse worden de gegevens verwerkt en georganiseerd in een enkel schema
voordat ze in het warehouse worden geplaatst. De analyse wordt uitgevoerd op de opgeschoonde
gegevens in het warehouse. De data is dus gestructureerd. Bij een data lake gaat het om de
ongestructureerde en ruwe gegevens. De gegevens worden enkel geselecteerd en georganiseerd
wanneer dat nodig is.
Data in bedrijven
Data science gaat over de vraag of we een probleem kunnen oplossen. Data moet verzameld
worden. Data is bijna nooit gratis beschikbaar. Bedrijven moeten investeren in data. Eenmaal je de
data hebt, moet je die data organiseren en analyseren en zo ontplooien zodat de data inzetbaar
wordt voor het bedrijf.
Data value trap
Wanneer je gaat nadenken over wat nu de waarde van data in de bedrijfsvoering is, dan heb je een
getraptheid. Naarmate je hoger gaat op de trap, zullen de analysetechnieken complexer worden.
In eerste instantie zou het interessant zijn als je via data kan beschrijven wat er gebeurd is. Dit is een
waarde voor een bedrijf. De waarde wordt groter als je ook kan zeggen waarom het gebeurd is. In
derde instantie ga je voorspellen wat er gebeuren gaat en wat het toekomstbeeld is. Dan heb je nog
meer waarde want je weet het op voorhand. De laatste stap is hoe kan je ervoor zorgen dat het zal
gebeuren. Als je daarop kan antwoorden, pas dan heb je de grootste waarde.
2
, 1.1 DATA-ANALYTICAL THINKING
INTRODUCTIE
De afgelopen jaren is er veel geïnvesteerd in de bedrijfsinfrastructuur, waardoor het vermogen om
gegevens te verzamelen in de hele onderneming is verbeterd. Vrijwel elk aspect van het
bedrijfsleven staat nu open voor gegevensverzameling: operaties, productie, supply chain
management, prestaties van marketingcampagnes, klantgedrag... Tegelijkertijd is er nu op grote
schaal informatie beschikbaar over externe gebeurtenissen, zoals markttrends, sectornieuws en
bewegingen van concurrenten. Deze brede beschikbaarheid van gegevens heeft geleid tot een
toenemende belangstelling voor methoden om nuttige informatie en kennis uit gegevens te halen:
het domein van de datawetenschap.
We gaan de essentie van data-analytical thinking uitleggen via een mindmap. Er zijn vier paden die
we binnen data-analytical thinking gaan bespreken: waarom is data science zo belangrijk, wat is
analytisch denken, wat is data science en enkele voorbeelden.
WAAROM DATA-ANALYTICAL THINKING EN DATA SCIENCE?
Er zijn drie redenen waarom data-analytical thinking en data science zo belangrijk zijn. Eerst en
vooral zijn er veel mogelijkheden dankzij de beschikbare data. Daarnaast is een een probleem m.b.t.
de naleving van de regels. Ten slotte zijn er enorm veel applicaties mogelijk.
Data opportuniti es
Nu er enorme hoeveelheden gegevens beschikbaar zijn, zijn bedrijven in bijna elke sector gericht op
het benutten van gegevens voor concurrentievoordeel. In het verleden konden bedrijven mensen in
dienst nemen om datasets handmatig te onderzoeken, maar het volume en de verscheidenheid aan
gegevens hebben de capaciteit van handmatige analyse ver overtroffen.
3
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper mauritshiemstra. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €4,99. Je zit daarna nergens aan vast.