100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Model Organisms In Biological Research (G0G43A) €8,69
In winkelwagen

Samenvatting

Samenvatting Model Organisms In Biological Research (G0G43A)

 7 keer verkocht

What model organisms are used in research? Find out in this summary! This summary depicts all topics discussed in the course. I got a 17/20 by learning this.

Voorbeeld 4 van de 31  pagina's

  • 9 februari 2023
  • 31
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (2)
avatar-seller
freyavandeneynde16
H1: Introduction
1. What defines a model organism?
a) Extensively studied to understand biological phenomena
b) Provide insight into workings other organisms/ biological processes

Model system= used to study very specific topic, used by few research groups

Model organism= used to study variety of topics, used by many research groups

ETHICAL REGULATIONS ON VERTEBRAE + CEPHALOPODS!

1) Explore potential causes and treatments for human disease (experimentation on humans
unethical/ unfeasible)
2) Possible by common descent of living organisms + conservation of metabolic and
developmental pathways

2. Model system to model organism
1. Aristotle: observes developing chicken egg
2. Claudius Galenus: used animals to make assumptions about human anatomy
3. Louis Pasteur: studied diseases in dogs, chickens, sheep, silkworms
4. Gregor Mendel: finds principles of genetics in pea plants

MODEL ORGANISMS ALL BEGAN AS MODEL SYSTEMS!

3. Selecting a suitable model organism
 Large conservation genes: invertebrates – humans  immune system: less direct
counterparts
 Closely related models: mouse + rat + dog + primates

a) Short life-cycle
b) Small size
c) Low cost
d) Genetic techniques (inbred strains + stem cell lines + transfection systems)
e) Non-specialist living requirements
f) Genome arrangement
g) Historical/ natural association with humans

Genetic model - Amenable to genetic analysis: breed in large numbers + short
systems generation time
- Hybridisation possible
- Following over several generations
- Many mutants available
- Detailed genetic maps
C. elegans, D. melanogaster, S. cerevisiae
Experimental - Not genetically amenable: long generation intervals + poor genetic map
model systems - Experimental advantages (developmental biology)
Hydra, Xenopus laevis, chicken
Genomic model - Pivotal position in evolutionary tree


1

, systems - Genome ideal for study
tardigrade, puffer fish



4. Homology and synteny
Homology= similarity in structures due to common descent  insulin genes in mice and humans

Paralogs= two homologous genes that are product of gene duplication  humans with several
hemoglobin genes

Orthologs= two homologous genes that are product of speciation  human and mice insulin

Synteny= finding genes in comparable places (conserved positions throughout evolution)

5. Comparative genomics
a) Understand evolution
b) Improve crops
c) Identify genetic basis of disease

GENETIC INFO IS EXCHANGEABLE: MANY GENES ARE CONSERVED OVER ORGANISMS

GENOME SIZE IS UNRELATED TO COMPLEXITY!

EPIGENETICS + GENE EXPRESSION + ALTERNATIVE SPLICING DETERMINES ORGANISM

Gene expression:

1. Single mutation in FOXP2 gene impairs speech but not language comprehension
2. FOXP2 found in primates + mice  2-3 AA differences
3. Difference allowed speech to arise
 Small changes can affect function
 Diverse lifeforms can emerge from similar toolkits of genes

6. Genome evolution
Autopolyploidy= genome of one species duplicated

Allopolyploidy= hybridization + duplication of genomes of two different species  more copies of
chromosome, bigger organisms

 Release of selection pressure: novel functions + get lost + pseudogene + function partitions
into two duplicates

MANIPULATE MORE DNA IN MODEL ORGANISMS

5% OF HUMAN GENOME CONSISTS OF SEGMENTAL DUPLICATIONS, GENES HAVE DIFFERENT
EXPRESSION PATTERNS

Horizontal gene transfer= genes hitchhike from other species, organisms swap genes (bacteria,
viruses, formation eukaryotes, immune system)

MODEL ORGANISMS DO NOT HAVE FINAL/ OPTIMIZED GENOMES

a) What question needs to be answered?
b) Which organism can help solving this question?

2

, c) What are the possibilities and practical constraints?
d) What are ethical concerns?

7. Browsing through model organisms
 Earth belongs to prokaryotes
 Life on earth is > 3.4 billion years old (Cyanobacteria)
1) Prokaryotes
2) Protista
3) Plants
4) Fungi
5) Invertebrates
6) Vertebrates (fish, birds, amphibians, rodents, dog, monkey)
7) Cell lines

Non-model organisms= drug discovery + evolutionary gap

 Difficult to breed in captivity
 Collected in the wild
 Genome, transcriptome, proteome information and tools often missing

On the other hand, an observation made in one model is often relevant to other models: enhance
interactions between model systems

Complete genome sequences has greatly facilitated comparisons between different species and
increased interactions among research communities


Neurospora crassa - Clean genetics
- Gene-enzyme relationships
- Circadian rhythm
- Epigenetic gene silencing
E. coli - Gene regulation studies
Mycoplasma sp. - Minimal genome that can sustain life
Bacillus subtilis - Gram-positive bacteria
- Sporulation, resistance and biofilms
Caulobacter - Cell differentiation
crecentus - Decision making between stalked cell and swimming
Dictyostelium - Sporulation, resistance and biofilms
discoideum
C. elegans
D. melanogaster

H2: Yeast
Saccharomyces cerevisiae Schizosaccharomyces pombe
Budding yeast Fission yeast: grow on ends, divide in middle
- Cell cycle, DNA repair and genetics - Cell cycle, DNA damage responses &
- Signal transduction genetics
- Protein interaction/aggregation - Subcellular localization & trafficking
- Ageing & disease - RNAi possible
NO INTRONS  easy for research Structure DNA similar to humans

3

, Genome: 1996 Genome: 2002
 Study human disease homologs  Study human disease homologs

1. S. cerevisiae
 Ancestor: 1 billion years ago  evolutionary distance: 2 billion years
 Unicellular eukaryote

Advantages:

1) Small size
2) Rapid growth (doubles every 1-2h)
3) Small genome
4) Amenable for genetics: short life cycle + HIGH RECOMBINATION FREQUENCY + easy
transformation + tetrad analysis

Yeast genome:

 12.5 Mbp in 16 chromosomes
 4% have introns  few alternative splicing
 Average gene is ~1700 bp
 Many genes contain ORF, not all (some genes don’t code for protein)
 1 cM=2.8 kb average (700 kb in humans)

Morgan= unit of chromosomal distance between 2 genes/ recombination frequency/ percentage of
homologous recombination  important to know whether double mutants can be made

 0 M: no recombination, 100M: always recombination
 THE SMALLER cM, THE MORE RECOMBINATION OCCURS!

2. Life cycle
S. cerevisiae (N=16)

 Only mate with other mating type: a and α
 Spores together in ascus  product of single
meiotic division together (genetics traceable)

S. pombe (N=3)

 Mating types (+ and -) mate when starved
 Production ascospores

Choices: divide/not + haploid/diploid + mating and meiosis

Difference: preferred mode of growth + division




1. Haploids divide mitotically  generate stable colony
2. Mat A gene drives A program in cell + 2 α loci on mat α gene drive α program
3. Opposite mating type mates  diploid with A and α gene (no feromones + receptors)
4. Mitosis  stable colony
5. Diploids enter meiosis + sporulate producing tetrads

4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper freyavandeneynde16. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €8,69. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64450 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€8,69  7x  verkocht
  • (0)
In winkelwagen
Toegevoegd