100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Algemene Natuurkunde: Afleidingen en toepassingen €7,99   In winkelwagen

Samenvatting

Samenvatting Algemene Natuurkunde: Afleidingen en toepassingen

 26 keer bekeken  0 keer verkocht

Algemene Natuurkunde: Afleidingen en toepassingen

Voorbeeld 4 van de 52  pagina's

  • 12 april 2023
  • 52
  • 2022/2023
  • Samenvatting
Alle documenten voor dit vak (2)
avatar-seller
lisaverweren3
Natuurkunde: a eidingen en toepassingen
Druk in een fluida (ρ = cte)
De druk op diepte h, is het gevolg van het gewicht van het
fluïdum erboven:
F
P=
A
F = mg = (ρV )g = ρAhg
⇒ P = ρgh


Druk in een fluida (ρ is veranderlijk)
dF = g(dm) = ρgdV = ρgA dy (y vanaf bodem)
dF = PA − (P + dP)A
Er is evenwicht als:
dP
dF = dF ⇒ dP = − ρgdy ⇔ = − ρg (hoe hoger
dy
in de vloeistof, hoe lager de druk)
Het drukverschil tussen twee punten wordt dan gegeven door:
P2 y2

∫P ∫y
dP = − g ρ(y)dy
1 1
y2

∫y
P2 − P1 = − g ρ(y)dy
1

Voor een vloeistof is ρ(y) ct. ⇒ P2 − P1 = − ρg(y2 − y1), voor een gas is dit niet zo.

Drukverandering in de atmosfeer
ρ(y) kan bepaald worden door metingen of door een theoretische veronderstelling te maken.
Voor de atmosfeer gebruiken we de ideale gaswet en nemen we aan dat de temperatuur constant
is.
R
P=ρ T
m
dP = − gρ(y)dy
We nemen dus aan dat:
ρ(y) P(y)
= (want IG met T ct.)
ρ0 P0
kg
Met P0 en ρ0 de druk en dichtheid op zeeniveau (P0 = 1,013 ∙ 105Pa en ρ0 = 1,29 )
m3


1

, ( P0 )
ρ
dP = − gP 0 dy

P
ρ0 y
( P0 ) ( P0 )
dP ρ0 dP P ρ
∫P P P0 ∫0
⇔ =−g dy ⇒ = − g dy ⇒ ln = − 0 gy
P 0
P0
−( P0 )y
ρ0 g
⇔ P = P0 ∙ e
Slechts een benadering want in werkelijkheid is de temperatuur in de atmosfeer variabel.
Principe van Pascal
De druk op gelijke hoogte in dezelfde
vloeistof is gelijk.
Pout = Pin
F F
⇔ out = in
Aout Ain
A
⇔ Fout = out Fin
Ain

Wet van Archimedes
Bekijk een denkbeeldig cilindertje vloeistof. De zwaartekracht op
de cilinder is: FG = − ρF gA(h2 − h1)
Vermits de druk onderaan groter is dan bovenaan, is er een
netto kracht FB naar boven (opwaartse stuwkracht):
FB = F2 − F1 = ρF gA(h2 − h1)
⇔ FB = ρF gA ∆ h
⇔ FB = ρF gV
⇔ FB = mF g
Stel nu een cilinder met dichtheid ρ: FG = − ρgV = − mg
⇒ Elk ondergedompeld voorwerp ondervindt een opwaartse
stuwkracht gelijk aan het gewicht van de verplaatste vloeistof.



Continuïteitsvergelijking
Het massadebiet is constant want er gaat evenveel
massa in als uit de stroming:
∆ m1 ρ ∆ V1 ρ A ∆ l1
= 1 = 1 1 = ρ1 A1v1
∆t ∆t ∆t
Er gaat geen vloeistof verloren dus:
∆ m1 ∆ m2
= of nog: ρ1 A1v1 = ρ2 A2 v2
∆t ∆t
⇒ ρAv = cte
2

,En als ρ
= cte:
⇒ Av = cte

Wet van Bernoulli
W1 = F1 ∆ l1 = P1 A1Δl1
W2 = − F2 ∆ l2 = −P2 A2Δl2
W3 = − mg(y2 − y1)
W = W1 + W2 + W3 = P1 A1Δl1−P2 A2Δl2 − mg(y2 − y1)
Arbeid-energie principe:
1
W= m(v22 − v12)
2
Sinds m = ρA ∆ l en A1 ∆ l1 = A2 ∆ l2
1 1
P1 + ρv²1 + ρgy1 = P2 + ρv²2 + ρgy2
2 2
1
⇒ P + ρv 2 + ρgy = cte
2

Wet van Poiseuille
Kracht Fuit uitgeoefend op de vloeistof (~drukverschil
links-rechts) en wrijvingskracht Fvisc als gevolg van de
viscositeit van de vloeistof zijn:

Fuit = ΔP πr ² (ΔP = P1 − P2)
dv
Fvisc = η (2π rl) , met 2π rl het mantelopp. en
dr
dv
de snelheidsgradiënt (dr want radiaal)
dr
Bij evenwicht geldt dan: Fuit
+ Fvisc = 0 of dus:
dv dv ΔP
ΔP πr 2 = − η (2π rl) of nog: = − r
dr dr 2ηl
= differentiaalvgl op te lossen naar v(r)

Opm: we nemen aan dat v = 0 als r = R (adhesie buis-
vloeistof)
0 R
ΔP
∫v ∫r
dv = − r dr en dus:
2ηl
ΔP 2
v(r) = (R − r 2) = parabolisch snelheidsprofiel
4ηl

3

, Stel nu het volumedebiet voor uniforme snelheid gelijk aan
Al Avt
Q= = = Av (volume gedeeld door tijd), hieruit volgt dat voor
t t


een niet-uniforme snelheid Q gegeven is door: Q = v(r) d A
met d A = r dr dθ en dus:
2π R

∫0 ∫0
Q= dθ v(r) r dr

R
ΔP π ΔP R 2 πR 4(P1 − P2)
∫0 4ηl ( 2ηl ∫0
Q= R − r ) 2πr dr =
2 2
(R − r )r dr =
2
8ηl


Harmonische trilling
Kracht F uitgeoefend door een veer op een voorwerp:
F = − k x (Wet van Hooke)
F = m a (Wet van Newton)
d2x
⇒ m 2 + k x = 0, 2e orde diffvgl, voorstel: x(t) = e λt, λ
dt
complex
⇒ x(t) = A cos(ωt + ϕ)
⇒ v(t) = − Aωsin(ωt + ϕ)
⇒ a(t) = − Aω 2cos(ωt + ϕ)
Waarbij A en ϕ worden bepaald uit de beginvoorwaarden.
k 2π
ω= = 2π f = (vul a(t) in in diffvgl 
m T

(m )
k
− ω2 = 0 )

1 k m
f = en T = 2π
2π m k


Energie in een harmonische trilling
E = Ep + Ek
1
Ek = mv2
2
1
∫ ∫
Ep = − F(x)d x = k xd x = k x 2
2

4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lisaverweren3. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 79373 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,99
  • (0)
  Kopen