100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Practical 4: Advanced Data Analysis: full summary + explanations €6,49   In winkelwagen

Samenvatting

Practical 4: Advanced Data Analysis: full summary + explanations

1 beoordeling
 67 keer bekeken  10 keer verkocht

This document includes an explanation, screenshots, and answers to questions of the fourth practical of Advanced Data Analysis of the first Master of Biomedical Sciences at the University of Antwerp

Voorbeeld 3 van de 17  pagina's

  • 5 mei 2023
  • 17
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (19)

1  beoordeling

review-writer-avatar

Door: roberto777torres • 5 maanden geleden

avatar-seller
Bi0med
Principal component analysis and cluster analysis
Source : Everitt and Hothorn, Handbook of Statistical Analysis using R, Chapman & Hall

Multidimensional data are data where within each individual or each observation unit many
variables have been measured: several (p) variables measured in one observational unit.
- How do the variables relate to each other
- Are there subgroups in the data
- Can we summarize the information in less than p variables
We will discuss two techniques: PCA and cluster analysis. Both are exploratory techniques: they
are made to explore the data. It does not involve hypothesis testing, parameters estimation or
confidence interval and we are also not doing significance testing. The results should not be
over-interpreted.

PCA: redistribute the information from the original variables (p dimension) to an equal number
of p new variables: these are called the principal components.
- Loadings
- Scores
PCA shows the direction of the strongest/largest variants: the
direction in the coordinate system along which the variants of the
values is the largest. This direction is indicated by a vector (green
one), and the direction is indicated by again 2 coordinates: the
loadings. These two loadings tell you how to transform the
original values into the principle components. It can project each
individual point onto the PCA axis through a given formula.




Through this ‘linear combination’ you obtain the new score in the
new coordinate system: this is called the score of this point for this
PCA.
Then you have projected the initial points onto the first PC axis. This
is a summary of the information in the entire dataset using one
variable: PC1 instead of the 2 initial values.

The remaining variance is put in the 2nd PC: the information here is
independent of PC1. It is orthogonal to the first PC vector.
Again we can project each point onto this PC as well: gives the PC
score through a similar matrix calculation.
If you express this point onto the two PC axises instead of the initial axises, you have twisted the
coordinate system.

1

,Principal components analysis (PCA) : the heptathlon dataset.
The dataset heptathlon1988.txt consists of the heptathlon results at the Olympic games in 1988 in
Seoul, South Korea. Participants compete in 7 athletics disciplines (100m hurdles, high jump,
shot, run200m, long jump, javelin, run800m). Athletes conquer points at each discipline and the
participant with most points at the end wins the competition. In 1988, the competition was won
by America’s Jacky Joyner-Kersee. Below are the original results.




Results from all 25 participating athletes is given in the heptathlon1988.txt dataset. In the last
column, the official Olympic score is given.

heptathlon<-read.table("heptathlon1988.txt",header=T)


The running competitions are measured in seconds, while the longjump, highjump, javelin and
shot are in metres. This means that for longjump, javelin and shot, higher values are better,
whereas in the 3 running events (hurdles, 200m and 800m), a lower value s better. Therefore, we
recode the results of the running events so that a high value means a good result across all
events.

heptathlon$hurdles <- max(heptathlon$hurdles) -heptathlon$hurdles
heptathlon$run200m <- max(heptathlon$run200m) -heptathlon$run200m
heptathlon$run800m <- max(heptathlon$run800m) -heptathlon$run800m
names(heptathlon)[8]<-"pointsTotal"




2

, In the following exercise we will explore the structure of the data using principal component
analysis, and compare how the principal component scores relate to the official Olympic scores.

The aim of principal component analysis is to describe variation in a set of correlated variables.
We can calculate all pairwise correlations between the results from the 7 competitions, and
visualize them using a pairs plot (which is nothing more than a matrix of scatterplots). Note that
we leave out the final column with the official Olympic score.

plot(heptathlon[,-8])
round(cor(heptathlon[,-8]),3)




The cor.test represents the strength of the relation between variables! 0 is no relation, +1 is strong
positive correlation, -1 is strong negative correlation.

Most pairs of events are positively correlated, with the notable exception of the javelin throw.
This is a much more technical event, compared to the other power-related competitions. The
pairs plot also identified one outlier – your instructor will tell you why.

This was an athlete from Papouia-New-Guinea (Launa): she has much worse results than all the
other competitors.

The seven competitions are a multi (7-)variate measurement on each individual, with the 7
measurements being correlated. Principal component analysis (PCA) redistributes the

3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Bi0med. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67096 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,49  10x  verkocht
  • (1)
  Kopen