100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Rekenen Wiskunde Uitgelegd (Landelijke Kennisbasis Rekenen) €7,49
In winkelwagen

Samenvatting

Samenvatting Rekenen Wiskunde Uitgelegd (Landelijke Kennisbasis Rekenen)

10 beoordelingen
 810 keer bekeken  82 keer verkocht
  • Vak
  • Instelling
  • Boek

In deze samenvatting wordt met voorbeelden en afbeeldingen de stof aangereikt die op de RWD-toets en de Landelijke Kennisbasis Rekenen Wiskunde naar voren komen. In de samenvatting wordt zowel de basisvaardigheden als de repertoire behandeld. Door dit document heb ik zowel de RWD als de Landelijke ...

[Meer zien]

Voorbeeld 3 van de 30  pagina's

  • Ja
  • 8 mei 2023
  • 30
  • 2022/2023
  • Samenvatting

10  beoordelingen

review-writer-avatar

Door: christiaanverweij1 • 6 maanden geleden

review-writer-avatar

Door: gerrionsmeins • 3 maanden geleden

review-writer-avatar

Door: marissa97 • 8 maanden geleden

review-writer-avatar

Door: Lieeeesss • 9 maanden geleden

review-writer-avatar

Door: 531113N • 9 maanden geleden

review-writer-avatar

Door: heerlerweg • 10 maanden geleden

review-writer-avatar

Door: annikamensing • 10 maanden geleden

Bekijk meer beoordelingen  
avatar-seller
Hoofdstuk 1 ‘hele getallen’
1.2.1 Talstelsels
Een talstelsel is een systeem hoe je getallen opschrijft. Voorbeelden hiervan zijn turven en
symbolen, zoals die van de Romeinen. Met een aantal simpele regels kon je hoeveelheden
symboliseren. Met behulp van de Romeinse abacus, kon je er zelfs mee rekenen. Het Romeinse
systeem heet het additief talstelsel.

I=1 V=5 X = 10 L = 50 C = 100 D = 500 M = 1000

De regels waren:
- Een symbool gevolgd door een symbool voor een even groot of kleiner symbool, betekent
dat de waarden van die symbolen bij elkaar worden opgeteld.
- Een symbool gevolgd door een symbool met een grotere waarde, betekent dat het kleinste
van het grootste symbool wordt afgetrokken.

Toen de maatschappij complexer werd, kwam het positiestelsel. Het positiestelsel geeft de waarde
van een getal aan. Als het getal 3273 is, dan is de eerste 3 drieduizend waar, de 2 tweehonderd, de 7
zeventig en de laatste 3 gewoon drie.
Duizendtallen Honderdtallen Tientallen Eenheden
103 102 101 100
3 2 7 3




Visualiseren van getallen
Je kunt getallen in beeld brengen door materiaal of door een model. Een
mooie context is om het tientallig stelsel in beeld te brengen door gebruik
van geld. In het basisonderwijs wordt ook wel gebruik gemaakt van MAB-
materiaal. Hierbij wordt het tientallig stelsel weergegeven in losse blokjes,
staafjes, plaatjes en kubussen.

Een getallenlijn is een belangrijk middel op inzicht te krijgen in het positiestelsel. Het gaat dan niet
alleen om de waarde, maar ook de plaats die een cijfer heeft binnen een verzameling van cijfers. Het
getal 667 zit tussen de 600 en 700. Dit kan ingekaderd worden door bewust te worden dat het tussen
de 660 en 670 zit, etc.

1.2.2 Contexten en modellen
Een model is een schematische weergave van een bewerking of opgave. Een context is een
betekenisvolle situatie gebaseerd op een model. Een context is zo ontworpen dat het model de
handeling inzichtelijk maakt. Je kan de som 8 x 7 is verschillende contexten doen. bijvoorbeeld
iemand werkt 7 uur per dag en verdient 8 euro per uur, hoeveel verdien je dan. Bij deze context kun
je het model van de getallenlijn gebruiken. Je kan ook zeggen ik heb een bakplaat. Op de bakplaat
passen 8 koekjes in de lengte en 7 koekjes in de breedte, hoeveel koekjes passen op de bakplaat. Bij
deze context kun je het rechthoekmodel gebruiken. Het is dezelfde opgave met hetzelfde antwoord,
maar een andere context.

Modellen voor de bewerkingen optellen, aftrekken, vermenigvuldigen en delen
Bewerkingen leiden naar een resultaat. Dat wordt aangegeven door het isgelijkteken (=). Optellen
wordt gezien als het samenvoegen van twee of meer hoeveelheden. De getallen die bij elkaar
worden opgeteld noemen we de termen van optelling. De uitkomst noemen we de som. Een model

,voor rekenen tot honderd is het honderdveld. De getallenlijn wordt ook wel gebruikt, ook wel het
lijnmodel genoemd.

, Er zijn verschillende manieren om op te tellen:
- Rijgen (€1 + €3 + €5 = €9)
- Meten van lengtes (twee stukjes zijn samen …)
- Warmte (temperatuur gaat van 12 naar 20 graden)
- Toename (‘Hoe oud ben je over zes jaar?’)

Bij het optellen is het belangrijk dat we weten dat 8 + 7 en 7 + 8 rekenkundig hetzelfde is. Deze
eigenschap heet de communicatieve eigenschap.

Bij een aftrekking heet het getal waarvan wordt afgetrokken het aftrektal. Het getal dat daarvan
wordt afgetrokken heet de aftrekker. De uitkomst van een aftrekking is het verschil. Aftrekken gaat
niet altijd over het verschil.

Er zijn verschillende manieren om naar aftrekken te kijken:
- Splitsen
- Verminderen
- Vergelijken
- Inverse

Bij splitsen is er sprake als bij een hoeveelheid wordt gevraagd hoeveel er overblijft wanneer alvast
een groepje benoemd wordt. Bij verminderen gaat het om terugtellen. Bij vergelijken gaat het om
het verschil tussen twee hoeveelheden. Bij de inverse toepassing van aftrekken wordt nog gekeken
naar hoeveel er nog bij moet om een bepaalde hoeveelheid te krijgen.

Als je veel van dezelfde getal moet optellen, is het handiger om dit te doen met een
vermenigvuldiging. De getallen die je vermenigvuldigd worden zijn de factoren. Het eerste getal in de
vermenigvuldiging is de vermenigvuldiger en het tweede getal is het vermenigvuldigtal. De uitkomst
van een vermenigvuldiging heet het product.

De betekenis van vermenigvuldigen hangt af per situatie en kent twee betekenissen:
- Herhaald optellen
- Vermenigvuldigen met factoren

Herhaald optellen is de meest gebruikelijke manier om naar vermenigvuldigen te kijken. Denk aan
een krat bier (6 x 4), een schaakbord (8 x 8) of een cadeau voor je meester (aantal kinderen x bepaald
bedrag). Modellen die hier bij aansluiten zijn het rechthoekmodel en het groepjesmodel.

Het omgekeerde van vermenigvuldigen is delen. Het getal dat je wilt delen is het deeltal. Het getal
waardoor je het wilt delen is de deler. De uitkomst van een deelsom is de quotiënt.

Delen heeft ook meerdere interpretaties:
- Eerlijk verdelen en uitdelen
- Het inverse
- Ratio

Bij eerlijk verdelen gaat het om het eerlijk verdelen van een hoeveelheid. Bij de inverse ben je
herhaaldelijk aan het aftrekken. Dit wordt ook wel opdelen genoemd. Bij ratio worden twee
hoeveelheden met elkaar vergeleken. Als iemand 3 euro verdient terwijl iemand anders maar 1 euro
verdient, dan kun je zeggen dat de verhouding 3 : 1 is (notatie 3 : 1)

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper erwinvandenbosch. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 52510 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,49  82x  verkocht
  • (10)
In winkelwagen
Toegevoegd