100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Solution Manual for Numerical Methods for Engineers 8th edition by Steven C. Chapra, Raymond P. Canale. €16,84   In winkelwagen

Tentamen (uitwerkingen)

Solution Manual for Numerical Methods for Engineers 8th edition by Steven C. Chapra, Raymond P. Canale.

2 beoordelingen
 794 keer bekeken  14 keer verkocht
  • Vak
  • SM+TB
  • Instelling
  • SM+TB
  • Boek

Solution Manual for Numerical Methods for Engineers 8th edition by Steven C. Chapra, Raymond P. Canale.

Voorbeeld 4 van de 1180  pagina's

  • 17 juli 2023
  • 1180
  • 2022/2023
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • SM+TB
  • SM+TB

2  beoordelingen

review-writer-avatar

Door: prem011014 • 9 maanden geleden

review-writer-avatar

Door: abdarefa • 1 jaar geleden

avatar-seller
1 Copyright 202 1 © McGraw -Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw -Hill Education. Solution Manual for All Chapters Numerical Methods for Engineers 8th edition by Steven C. Chapra, Raymond P. Canale CHAPTER 1 1.1 Use calculus to solve Eq. (1.9) for the case where the initial velocity υ(0) is nonzero. We will illustrate two different methods for solving this problem: (1) separation of variables, and (2) Laplace transform. dv cgvdt m Separation of variables : Separation of variables gives 1dv dtcgvm
 The integrals can be evaluated as ln /cgvmtCcm   where C = a constant of integration, which can be evaluated by applying the initial condition to yield ln (0) /cgvmCcm which can be substituted back into the solution ln ln (0) //ccg v g vmmtc m c m            This result can be rearranged algebraically to solve for v,  ( / ) ( / )(0) 1c m t c m t mgv v e ec   where the first part is the general solution and the second part is the particular solution for the constant forcing function due to gravity. For the case where , v(0) = 0, the solution reduces to Eq. (1.10)  ( / )1c m t mgvec 2 Copyright 202 1 © McGraw -Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw -Hill Education. Laplace transform solution: An alternative solution is provided by applying Laplace transform to the differential equation to give ( ) (0) ( )gcsV s v V ssm   Solve algebraically for the transformed velocity (0)()/ ( / )vgVss c m s s c m (1) The second term on the right of the equal sign can be expanded with partial fractions ( / )
( / ) / ( / )g A B A s c m Bs
s s c m s s c m s s c m     (2) By equating like terms in the numerator, the following must hold 0cg A As Bsm   The first equation can be solved for A = mg/c. According to the second equation, B = –A, so B = –mg/c. Substituting these back into (2) gives //
( / ) /g mg c mg c
s s c m s s c m This can be substituted into Eq. 1 to give (0) / /()//v mg c mg cVss c m s s c m   Taking inverse Laplace transforms yields ( / ) ( / )( ) (0)c m t c m t mg mgv t v e ecc   or collecting terms  ( / ) ( / )( ) (0) 1c m t c m t mgv t v e ec   1.2 Repeat Example 1.2. Compute the velocity to t = 10 s, with a step size of (a) 1 and (b) 0.5 s. Can you mak e any statement regarding the errors of the calculation based on the results? At t = 10 s, the analytical solution is 44.91893 (Example 1.1). The relative error can be calculated with analytical numericalrelative true error 100%analytical The numerical results are: 3 Copyright 202 1 © McGraw -Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw -Hill Education. step v(10) magnitude of relative error 2 48.0179 6.899 % 1 46.411 2 3.322 % 0.5 45.6509 1.630 % The error versus step size can then be plotted as Thus, halving the step size approximately halves the error. 1.3 Rather than the linear relationship of Eq. (1.7), you might choose to model the upward force on the parachutist as a second -order relationship, UF c v v= - ¢∣∣ where c′ = a bulk second -order drag coefficient (kg/m). Note that the second -order term could be represented as v2 if the parachutist always fell in the downward direction. For the present case, we use the more general representation, vv∣∣ , so that the proper sign is obtained for both the downward and the upward directions. (a) Using calculus, obtain the closed -form solution for the case where the jumper is initially at rest (υ = 0 at t = 0). (b) Repeat the numerical calculation in Example 1.2 with the same initial condition and parameter values, but with second -order drag. Use a value of 0.225 kg/m for cd′. (a) You are given the following differential equation with the initial condition, v(t = 0) = 0, 2 dv cgvdt m Multiply both sides by m/c′ gives 2 m dv mgvc dt c Define / a mg c   0.01.02.03.04.05.06.07.08.0
0 0.5 1 1.5 2 2.5Relative error (%) Step size (seconds) Relative True Error vs. Step size 4 Copyright 202 1 © McGraw -Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw -Hill Education. 22 m dvavc dt Integrate by separation of variables, 22dv cdtm av
 A table of integrals can be consulted to find that 1
221tanhdx x
aa ax
 Therefore, the integration yields 1 1tanhvctCa a m  If v = 0 at t = 0, then because tanh–1(0) = 0, the constant of integration C = 0 and we obtain the equation 1 1tanhvcta a m  This result can then be rearranged to solve for v tanhgm gcvtcm    (b) Using Euler‘s method, the first two steps are computed 2 0.225(2) 0 9.81 (0) 2 19.6268.1v    2 0.225(4) 19.62 9.81 (1 43 9.62)66.696 4 28.3115 v    The computation can be continued and the results summarized along with the analytical result as: t v-numerical dv/dt v-analytical 0 0 9.81 0 2 19.62 8.538157 18.8138836 4 36.69631454 5.360817 33.61984724 6 47.41794779 2.381162 43.22542283 8 52.18027088 0.814029 48.7004867 10 53.80832813 0.243911 51.59332241 12 54.29615076 0.069674 53.06072073  54.48999908 0 54.48999908

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper solutions. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €16,84. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 78998 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€16,84  14x  verkocht
  • (2)
  Kopen