100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
HAVO Wiksunde A: HF 3 Lineaire Verbanden Samenvatting €3,99   In winkelwagen

Samenvatting

HAVO Wiksunde A: HF 3 Lineaire Verbanden Samenvatting

 12 keer bekeken  0 keer verkocht
  • Vak
  • Niveau

INCLUSIEF VOORBEELDEN. In deze samenvatting staat alle theorie die hoort bij hoofdstuk 3 lineaire verbanden. Daarnaast vind je er per theorie-onderdeel ook een voorbeeld met uitgebreide uitleg.

Voorbeeld 1 van de 6  pagina's

  • 20 augustus 2023
  • 6
  • 2023/2024
  • Samenvatting
  • Middelbare school
  • 4
avatar-seller
HAVO 4 Wiskunde A: SAMENVATTING HF3 LINEAIRE VERBANDEN AnneBijles

Lineaire formule y
Een lineair verband heeft de vorm: 𝑦 = 𝑎𝑥 + 𝑏. Hierin is:
𝑎 = richtingscoëfficiënt (ook wel hellingsgetal genoemd). Dit getal geeft aan hoeveel
de grafiek stijgt/ daalt indien je één stap naar rechts gaat.
𝑏 = snijpunt met de y-as
Een lineair verband is te herkennen als een lijn met overal dezelfde helling, zie ter illustratie x
de lijn hiernaast:
Merk op dat lijnen zoals 𝑦 = 2 en 𝑥 = 4 technisch gezien ook lineaire lijnen zijn, aangezien de
helling langs de hele lijn hetzelfde is.
Stappenplan voor het tekenen van een grafiek (bij een lineaire formule):
1. Maak een tabel met ruimte voor twee coördinaten
2. Bereken aan de hand van de gegeven formule twee coördinaten door twee keer een zelfgekozen
waarde voor 𝑥 in te vullen, meestal kies je als 𝑥-coördinaten 𝑥 = 0 en 𝑥 = 2
3. Teken een assenstelsel, vergeet niet de 𝑥-as en de 𝑦-as te benoemen
4. Teken de twee punten die volgen uit de tabel
5. Trek een lijn door deze twee punten
6. Eventueel kan je nog vlak langs de lijn de formule opschrijven


Voorbeeld tekenen van een lineaire lijn:

Vraag: Teken de grafiek die hoort bij de lijn 𝑘: 𝑦 = -2𝑥 − 4

Antwoord:
1. + 2. Invullen van 𝑥 = 0 geeft 𝑦 = -2𝑥 − 4 = -2 ∙ 0 − 4 = -4 en zo geeft 𝑥 = 2 een 𝑦 = -8
x 0 2


y -4 -8

Stap 3. + 4. + 5. + 6.
y
2


x
-2 -1 0 1 2 3


-2



-4

𝑦 = -2𝑥 − 4
-6


-8




De richtingscoëfficiënt
Zoals in de sectie hierboven al beschreven staat: de richtingscoëfficiënt (ook wel hellingsgetal genoemd)
geeft aan hoeveel de grafiek stijgt/ daalt indien je één stap naar rechts gaat. Om de richtingscoëfficiënt
tussen twee punten A en B (en dus voor een lineaire lijn) te berekenen is er de volgende formule:
∆𝑦 𝑦+ − 𝑦-
𝑎= =
∆𝑥 𝑥+ − 𝑥-




Het delen of overnemen van (gedeeltes van) deze samenvatting is niet toegestaan© 1
AnneBijles

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper AnneBijles. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €3,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 64438 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€3,99
  • (0)
  Kopen