100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Résumé analyse 1 avec des exercices corrigées €10,11   In winkelwagen

Samenvatting

Résumé analyse 1 avec des exercices corrigées

 0 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

une résume bien détaillée avec des exercices corrigées pour Analyse 1

Voorbeeld 4 van de 75  pagina's

  • 17 september 2023
  • 75
  • 2014/2015
  • Samenvatting
avatar-seller
Analyse 1 (SMPC)

, Chapitre 1

Les suites

1. Définitions
1.1. Définition d’une suite

Définition 1

– Une suite est une application u : N → R.
– Pour n ∈ N, on note u(n) par u n et on l’appelle n-ème terme ou terme général de la suite.


La suite est notée u, ou plus souvent (u n )n∈N ou simplement (u n ). Il arrive fréquemment que l’on consi-
dère des suites définies à partir d’un certain entier naturel n 0 plus grand que 0, on note alors (u n )nÊn0 .


Exemple 1
p p p
– ( n)nÊ0 est la suite de termes : 0, 1, 2, 3,. . .
n
– ³((−1)
´ )nÊ0 est la suite qui alterne +1, −1, +1, −1,. . .
– n12 . Les premiers termes sont 1, 14 , 91 , 16
1
, ...
nÊ1



1.2. Suite majorée, minorée, bornée

Définition 2

Soit (u n )n∈N une suite.
– (u n )n∈N est majorée si ∃ M ∈ R ∀ n ∈ N u n É M.
– (u n )n∈N est minorée si ∃ m ∈ R ∀ n ∈ N u n Ê m.
– (u n )n∈N est bornée si elle est majorée et minorée, ce qui revient à dire :

∃M ∈ R ∀n ∈ N | u n | É M.



+ M
+
+ +
+ + +
+
+

+ +

0 1 2 +
+ + m



1

, Les suites 2


1.3. Suite croissante, décroissante

Définition 3

Soit (u n )n∈N une suite.
– (u n )n∈N est croissante si ∀ n ∈ N u n+1 Ê u n .
– (u n )n∈N est décroissante si ∀ n ∈ N u n+1 É u n .
– (u n )n∈N est monotone si elle est croissante ou décroissante.



Remarque

– (u n )n∈N est croissante si et seulement si ∀ n ∈ N u n+1 − u n Ê 0.
– Si (u n )n∈N est une suite à termes strictement positifs, elle est croissante si et seulement si ∀ n ∈
u n+1
N u n Ê 1.




Exemple 2
.
La suite (u n )nÊ1 définie par u n = (−1)n /n pour n Ê 1, n’est ni croissante ni décroissante. Elle est
majorée par 1/2 (borne atteinte en n = 2), minorée par −1 (borne atteinte en n = 1).
1

1 +
2
+
+
1 2 3 4 5 6
+
+
− 12


-1 +

¡1¢
– La suite n nÊ1 est une suite décroissante. Elle est majorée par 1 (borne atteinte pour n = 1), elle
est minorée par 0 mais cette valeur n’est jamais atteinte.



2. Limites
2.1. Limite finie, limite infinie
Soit (u n )n∈N une suite.

Définition 4

La suite (u n )n∈N a pour limite ` ∈ R si : pour tout ε > 0, il existe un entier naturel N tel que si n Ê N
alors | u n − `| É ε :

∀ε > 0 ∃N ∈ N ∀n ∈ N (n Ê N =⇒ | u n − `| É ε)


On dit aussi que la suite (u n )n∈N tend vers `. Autrement dit : u n est proche d’aussi près que l’on veut
de `, à partir d’un certain rang.

, Les suites 3




`+ε
+ +
` +
un + + +
`−ε +
+
+
+
+ +
+
N n



Définition 5

1. La suite (u n )n∈N tend vers +∞ si :

∀A > 0 ∃N ∈ N ∀n ∈ N (n Ê N =⇒ u n Ê A)

2. La suite (u n )n∈N tend vers −∞ si :

∀A > 0 ∃N ∈ N ∀n ∈ N (n Ê N =⇒ u n É − A)


Remarque

1. On note limn→+∞ u n = ` ou parfois u n −−−−−→ `, et de même pour une limite ±∞.
n→+∞
2. limn→+∞ u n = −∞ ⇐⇒ limn→+∞ − u n = +∞.
3. On raccourcit souvent la phrase logique en : ∀ε > 0 ∃ N ∈ N (n Ê N =⇒ | u n − `| É ε). No-
ter que N dépend de ε et qu’on ne peut pas échanger l’ordre du « pour tout » et du « il existe ».
4. L’inégalité | u n − `| É ε signifie ` − ε É u n É ` + ε. On aurait aussi pu définir la limite par la
phrase : ∀ε > 0 ∃ N ∈ N (n Ê N =⇒ | u n − `| < ε), où l’on a remplacé la dernière inégalité
large par une inégalité stricte.


Définition 6

Une suite (u n )n∈N est convergente si elle admet une limite finie. Elle est divergente sinon (c’est-
à-dire soit la suite tend vers ±∞, soit elle n’admet pas de limite).

On va pouvoir parler de la limite, si elle existe, car il y a unicité de la limite :

Proposition 1

Si une suite est convergente, sa limite est unique.


Démonstration

On procède par l’absurde. Soit (u n )n∈N une suite convergente ayant deux limites ` 6= `0 . Choisissons
ε > 0 tel que ε < |`−2` | .
0



Comme limn→+∞ u n = `, il existe N1 tel que n Ê N1 implique | u n − `| < ε.
De même limn→+∞ u n = `0 , il existe N2 tel que n Ê N2 implique | u n − `0 | < ε.
Notons N = max(N1 , N2 ), on a alors pour ce N :

| u N − `| < ε et | u N − `0 | < ε

Donc |` − `0 | = |` − u N + u N − `0 | É |` − u N | + | u N − `0 | d’après l’inégalité triangulaire. On en tire

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper zouhairsabri. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €10,11. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 75323 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€10,11
  • (0)
  Kopen