Trends in stem cell biology
Epigenetics and pluripotency in mouse embryonic stem cells
Stem cells
- Biological cells that can differentiate into other types of cells
- Can divide to produce more of the same type of stem cells (self-renewal)
Different forms of cell potency during
development in vivo
Mouse embryonic development: loss of
potency
- ICM stage already contains two
defined, irreversible cell
populations → becomes embryo
- Trophectoderm → becomes
placenta
Further development (gastrulation) and
full mouse
- 2nd lineage decision: ectoderm-endoderm-mesoderm
- During further differentiation, all ~200 cell types emerge
1
,Different types of cell potency during development can be mimicked in the culture dish
- Totipotency → trophoblast and inner
cell mass
- Embryonic stem cells
o Pluripotency → capable of
differentiation into all three
germ layers (ecto-, endo-,
mesoderm)
- Adult stem cells
o Multipotency → progenitor cells
(hematopoietic stem cells)
o Oligopotency → e.g. myeloid
stem cell (not lymphoid lineage)
o Unipotency → differentiate in
one cell only
Waddington’s landscape
- Canalization of development → not genetic! → epigenetic factors
Conclusion: cells loose potency during in vivo development
Different pluripotent cells in vitro (mouse)
Origin of 3 types of pluripotent mouse cells
Different types of in vitro pluripotent cells
- Five different types of pluripotent cells
o Embryonic stem cells (ESCs)
o Epiblast stem cells (EpiSCs; primed ES cells)
o Embryonal carcinoma cells (ECs; from teratocarcinoma in mouse testis from
primordial germ cells)
o Embryonic germ cells (EGCs)
o Induced pluripotent stem cells (iPSCs)
- Pluripotency is transient in the embryo → ES cells are a culture phenomenon → in normal
situation this will progress
2
,Test for pluripotency for newly derived cell lines
- Mouse
o Multilineage differentiation in vitro/in vivo
(germline colonization)
o Extensive proliferation in vitro under well-
defined culture conditions
o Known marker genes/proteins (Oct4,
Nanog, Sox2, SSEA, etc.)
- In practice absolute proof
o Contribute to all somatic
lineages/produce germ line
(chimerism) → single cell
can generate a mouse (get
rid of the other cells)
o Teratomas → inject single cell under the skin of the mouse → teratoma with all
layers if it is pluripotent/teratocarcinoma
- Human
o Multilineage differentiation in vitro (not vivo!) (germline colonization)
o Normal, stable karyotype
o Extensive proliferation in vitro under well-defined culture conditions
o Known marker genes/proteins (Oct4, Nanog, Sox2, SSEA, etc.)
- In practice absolute proof
o NOT: contribute to all somatic lineages/produce germ line (chimerism)
o Teratomas with differentiated cells of all three germ layers (could be performed in
mice; part of ethical discussion)
Conclusion: ES cells, like some other in vitro cultured cells, are pluripotent
Application of ES cells
Why are ES cells so interesting?
- Pluripotent, self-renewal
- ES cells are the only ones that will form the complete body
- Model for embryonic development
o Regenerative medicine (grow in large quantities+differentiate)
o Generation of KO mouse
o Disease model (because differentiate into desired specialization)
o Cytotoxicity tests (especially during pregnancy for fetus)
- Ethical concern: can we use human ESCs? Are human embryonic stem cells human beings
with full moral status?
3
, Use of (human) ESCs for regenerative medicine
(Embryonal) stem cell therapies
- Replace lost cells, might be useful in
o Stroke (heart attack) → loss of muscle cells
o Duchenne muscular dystrophy → muscle degeneration (eventual death)
o Parkinson’s disease → loss of dopamine-generating cells in the substantia nigra, a
region of the midbrain
o Alzheimer
- Dangers
o Graft rejection (but not when it’s from the patient itself; blood cord)
o Graft-versus-host → injected cells start attacking host cells
o Teratocarcinoma
Conclusion: ES cells are very useful for regenerative medicine and to study embryonic development
Molecular mechanisms to maintain pluripotency
Embryonic stem cells
- Pluripotent, (clonal) self-renewal
o Pluripotency is transient in the embryo
o ES cells are a culture phenomenon
o ES cells are primed to differentiate due to autocrine FGF4
- Different ways to inhibit differentiation in vitro
o Feeders + serum
o Lif + serum
o 2i (+Lif)
Regulatory pluripotency network in ES cells
- The pluripotency network acts to
o Self-induce its own expression, and of other pluripotency genes, by binding in the
promoter
o Repress genes that induce differentiation
4
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper roos1397. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,99. Je zit daarna nergens aan vast.