100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Cheat Sheet for Summary of Adaptive Interactive Systems €6,29   In winkelwagen

Samenvatting

Cheat Sheet for Summary of Adaptive Interactive Systems

 47 keer bekeken  1 keer verkocht
  • Vak
  • Instelling

This cheat sheet is linked to the full summary of the course INFOMAIS, including the most important parts and highlighted page references to the full summary. Handy for the exam!

Voorbeeld 2 van de 5  pagina's

  • 23 oktober 2023
  • 5
  • 2023/2024
  • Samenvatting
avatar-seller
Cheat sheet AIS
User modelling
 User Modeling is the process of creating and updating a user model by deriving user
characteristics from user data —which is data that is explicitly provided by the user, or data
that stems from indirect events and observations
 User modelling process
1. Acquisition of user data (p4 voor + nadelen expl/ impl estimates)
 Asking the user (direct input)
 More complex way is by observing the user’s actions
 Using stereotypes: any kind of group or class we can identify of users. Adapt to
groups instead of individual persons. E.g. teenage user; to cover cold start, but
oversimplification.
2. Inference of knowledge from the
data: process of interpreting
events and observations on a U,
making use of conditions, rules or
other forms of reasoning, and the
storage of the inferred knowledge
in the user model.
 Detecting patterns in user
behavior
 Matching user behavior
with the behavior of other
users
 Classifying users or content based on user behavior
3. Representation of the user model (Overlay models p5)
4. Updating a user model
 Not always done, but is recommended as user changes over time

Baye’s Theorem (p7)




Context (p16)
 Degree of context-awareness: Based on user interaction—from high to low:
1. User adaptation (user is active)
2. Passive context-awareness ; System constantly monitors the environment and offers
appropriate options to users
3. Active context-awareness;
System continuously and
autonomously monitors situation
and acts autonomously

Content-based filtering (p22, p38 (dis)adv)
 recommends items to users based on the
characteristics or content of the items
and the user's historical preferences.
 It relies on the idea that if a user has shown
interest in certain attributes or features
of items in the past, they are likely to be
interested in items with similar attributes
in the future. p23


1

,  To implement content-based filtering, each item is described using a set of attributes or features.
These attributes could be keywords, tags, genres, or other relevant characteristics, depending on
the type of items (e.g., movies, books, products).
 User profiles are created based on their past interactions and preferences. These profiles capture
the user's preferences for certain item attributes.
 When making recommendations, the system selects items that match the user's profile by
identifying items with attributes similar to those the user has shown interest in.
 Content-based filtering is especially useful when there is limited user interaction data or when
recommendations need to be explainable because it is based on item characteristics and
user preferences.

Item-based CF (p22)
 aka item-item collaborative filtering, makes recommendations by identifying similarities between
items rather than focusing on user profiles.
 It relies on the principle that if a user has liked or interacted with a particular item, they are likely to
be interested in items that are similar to the ones they have previously liked.
 The system builds an item-item similarity matrix, which quantifies the similarity between pairs of
items based on user interactions and ratings.
 When a user expresses interest in an item (e.g., by rating it positively or adding it to their list), the
system looks for similar items in the similarity matrix and recommends those similar items to the
user.
 Item-based collaborative filtering is particularly effective when there is plenty user interaction
data, and it doesn't require detailed user profiles.

Problems (cold start, latency, sparseness of matrix, scalability, diverseness, privacy and trust,
changing user interests) (p24)


Collaborative filtering (p26, (dis)adv p29, verschil CF en CB p29)
 System recommends items which were preferred by similar users in the past. Ratings
express preferences of the active user and also other users’ collaborative approach
 Works on user-item matrix; Memory- or model-based
 Assumption: Similar taste in the past implies similar taste in future
Memory vs Model-based CF (p30)
 Memory based: relies on the direct memory of user-item interactions, (user-item matrix)
 Model-based CF: using the user-item matrix to build a predictive model. (underlying &latent factors)
(p31)

Collaborative vs individual (content) (p32)
Term-Frequency - Inverse Document Frequency (p34)
 TF-IDF: a technique used in information retrieval and text mining to represent and evaluate the
importance of terms (keywords) within a collection of documents

Knowledge-based Recommendations (p39)
 Constraint-based recommender systems use explicitly defined rules to retrieve items that fulfill
user requirements, while case-based systems use similarity measures to find items similar to
user preferences.

Hybrid approaches (p41)
 Weighted: Score of different recommendation components are combined (numerically)
 Switching: System chooses among recommendation components and applies the selected one
 Mixed: Recommendations from different recommenders are presented together
 Monolithic (p43): exploiting different features: a single recommendation algorithm is employed,
but it leverages different features or types of information to make recommendations; a single,
comprehensive system that takes advantage of multiple sources of information.

2

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper IsabelleU. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €6,29. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 81113 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€6,29  1x  verkocht
  • (0)
  Kopen