SEM 1
Wiskunde II
SAMENVATTING
AUDREY JOKE BOLLEN
,H1: Functies van meerdere
veranderlijken
Algemene begrippen
Reële functies van n veranderlijken
Een reële functie van n veranderlijken f: IRn IR associeert met elk geordend n-tal (x1, x2, …, xn)
van IRn hoogstens één reële waarde z = f(x1, x2, …, xn) van IR.
➢ (x1, x2, …, xn) kan ook worden genoteerd als x
Een reële functie van 2 veranderlijken associeert met elk koppel (x, y) van IR² hoogstens 1 waarde
z = f(x, y) van IR.
f: IR² IR: (x, y) f(x, y) = z
Voorbeeld :
- Veeltermfunctie
- Kostenfunctie
o (pL, pK) z = waarde kost bij gegeven K & L
Domein en waardenverzameling
Het domein D(f) van f: IR² IR is de verzameling geordende n-tallen (x1, x2, …, xn) waarmee een
functiewaarde z = f(x1, x2, …, xn) kan worden geassocieerd.
- Waarden waarvoor het zinvol is om de functiewaarde te berekenen
o Welke waarden van IRn zijn zinvol
D(f) IRn
De waardeverzameling W(f) is de verzameling van de functiewaarden
- Waarden die je uitkomt na je berekening
W(f) IR
Voorbeelden pg 3 in cursus
Grafische voorstelling
Grafische voorstelling in de ruimte
Functie van 2 veranderlijken assenstelsel met 3 coördinaatassen (X-, Y-, Z-as)
- P(a,b,c) wordt voorgesteld in de ‘ruimte’
o Xy vlak ligt horizontaal
- Met elk geordend 3-tal (a,b,c) komt één punt P in de ruimte overeen
- De verzameling van de punten {(x, y, z) IR³ | z = f(x, y, z)} oppervlak in de ruimte
Niveaukrommen
Doorsneden met horizontale vlakken z = k
- Om voor bepaalde functies van 2 veranderlijken de grafische voorstelling voldoende
precies te tekenen
Voor de functie z = f(x, y) en voor k IR is de niveaukromme:
Nk = {(x, y) IR² | f(x, y) = k}
- Voor een functie van twee veranderlijken : Nk IR²
Voorbeeld:
- Alle productieniveaus waarvoor er een dezelfde winst is winst = k
- Isonutscurve en isokostcurve nut en kost = k
Voorbeeld pg 4 in cursus
1
,Partiële afgeleiden
Partiële afgeleide van de eerste orde
De partiële afgeleide van f : IRn IR naar de veranderlijke xi is
𝑓(𝑥1 , … , 𝑥𝑖 − ∆𝑥1 , … , 𝑥𝑖 ) − 𝑓(𝑥1 , … , 𝑥𝑖 , … 𝑥𝑛 )
lim
∆𝑥𝑖−→0 ∆𝑥1 𝑥𝑖
𝜕𝑓
Notatie: 𝜕𝑥 (𝑥1 , … , 𝑥𝑖 )
𝑖
𝜕𝑓
De partiële afgeleide berekend in een punt noteert men als: (𝜕𝑥 )
𝑖 (𝑎1 ,…,𝑎𝑛 )
Berekenen:
- Kijken naar 1 van de veranderlijken en de andere constant houden afleiden naar de
gekozen veranderlijke
Meetkundige interpretatie
We beperken ons enkel tot een functie van 2 veranderlijken
Voor een punt (a, b) D(f) voert men de partiële functies fa en fb in
fa: IR IR, y z = fa(y) = f(a, y)
fb: IR IR, x z = fb(x) = f(x, b)
Je neemt x als een constant (partieel afleiden naar y) dit wordt nu een functie van 1 veranderlijke
We kijken dus eigenlijk naar de doorsnede van de grafiek waar x = a
De partiële afgeleide van f naar y in (a, b) is de richtingscoëfficiënt van de raaklijn Rb(p) aan de
kromme z = fb(x) in het punt p = (a, b, f(a,b))
- Voor de partiële afgeleide naar x
- Is analoog voor de partiële afgeleide naar y
Het vlak gevormd door de 2 raaklijnen wordt het raakvlak genoemd
Voorbeelden pg 6 in cursus
Partiële afgeleiden van hogere orde
Nadat je een functie een keer hebt afgeleid, kan je die uitkomst opnieuw afleiden. Dit geeft 4
mogelijkheden.
1. 2 keer naar y afleiden
𝜕²𝑓
𝜕𝑦²
2. 2 keer naar x afleiden
𝜕²𝑓
𝜕𝑥²
3. Eerst naar x afleiden en dan naar y afleiden
𝜕²𝑓
𝜕𝑦𝜕𝑥
4. Eerst naar y afleiden en dan naar x afleiden
𝜕²𝑓
𝜕𝑥𝜕𝑦
Totale differentiaal
Voor een functie van twee veranderlijken f(x, y), waarbij x en y op hun beurt functies zijn van een
parameter t
- x = x(t) en y = y(t)
𝑑𝑓 𝜕𝑓 𝑑𝑥 𝜕𝑓 𝑑𝑦
= ∗ + ∗ = totale afgeleide
𝑑𝑡 𝜕𝑥 𝑑𝑡 𝜕𝑦 𝑑𝑡
➢ Vermenigvuldigen met dt
𝜕𝑓 𝜕𝑓
𝑑𝑓 = 𝜕𝑥 𝑑𝑥 + 𝜕𝑦 𝑑𝑦 = totale differentiaal
Voorbeeld pg 8 in cursus
2
, Ongebonden extrema en hessiaan
De functie f: IRn IR, x f(x) heeft een lokaal maximum in het punt a als er een - omgeving
O(a) van a bestaat waarvoor:
∀𝑥 ∈ 𝑂𝜀 (𝑎): 𝑓(𝑥) ≤ 𝑓(𝑎)
- Lokaal betekend dat dit het maximum is in deze omgeving, maar dat betekend niet dat dit
het absoluut maximum is
Voorbeeld:
- Winst hangt af van meerder veranderlijken: welke combinatie brengt de maximale winst
op
F heeft een lokaal minimum in het punt a als er een - omgeving O(a) van a bestaat waarvoor:
∀𝑥 ∈ 𝑂𝜀 (𝑎): 𝑓(𝑥) ≥ 𝑓(𝑎)
Een lokaal extremum is een lokaal maximum of een lokaal minimum (op beide te omvatten)
- Om het absolute extremum te vinden moet je de lokale extrema met elkaar vergelijken
-
Extrema voor functies van twee veranderlijken
𝜕𝑓 𝜕𝑓
Als 𝜕𝑥 en 𝜕𝑦 bestaan in (a, b) en als f een lokaal extremum heeft in (a, b) dan geldt:
𝜕𝑓 𝜕𝑓
( ) = 0 𝑒𝑛 ( ) = 0
𝜕𝑥 𝑎,𝑏 𝜕𝑦 𝑎,𝑏
- Wij gaan bij deze stap opzoek naar kandidaten voor de extrema
- Op de top van de ‘berg’
o Het raakvlak staat horizontaal
o Je hebt de twee raaklijnen op de doorsneden
▪ Horizontale rechte lijn: rico = 0
▪ Op de doorsnede zijn ook raaklijnen partiële afgeleide = 0
- Je hebt kans op een extrema als er een horizontaal raakvlak is en hiervoor moeten de
partiële afgeleiden gelijk zijn aan nul
𝜕𝑓 𝜕𝑓
Een punt (a, b) waarvoor ( ) = 0 en ( ) = 0 wordt een stationair punt genoemd.
𝜕𝑥 𝑎,𝑏 𝜕𝑦 𝑎,𝑏
- Dit zijn nodige voorwaarden, maar geen voldoende voorwaarden
➢ Niet elk stationair punt resulteert noodzakelijk in een lokaal extremum
o Voorbeeld pg 9 in cursus
Een zadelpunt is een punt waarvoor de doorsnede x = a een minimum/maximum bereikt en de
doorsnede y = b een maximum/minimum bereikt.
- Bijgevolg is dit geen minimum, noch een maximum
Voorbeeld:
- Minimum kosten
- Maximum winst
- In een zadelpunt zijn we in de economie niet geïntresseerd
Hessiaan
Stationaire punten zijn kandidaat extrema, maar om zeker te weten of het om een extremum
gaat moet men de Hessiaan H berekenen (=voldoende voorwaarde)
𝜕²𝑓 𝜕𝑓
( ) ( )
𝜕𝑥² 𝑎,𝑏 𝜕𝑥𝜕𝑦 𝑎,𝑏 𝜕²𝑓 𝜕2𝑓 𝜕𝑓
𝐻𝑓 (𝑎, 𝑏) = 𝑑𝑒𝑡 =( ) ∗ ( 2 ) − (( ) )²
𝜕²𝑓 𝜕²𝑓 𝜕𝑥² 𝑎,𝑏 𝜕𝑦 𝑎,𝑏 𝜕𝑥𝜕𝑦 𝑎,𝑏
( ) ( )
( 𝜕𝑥𝜕𝑦 𝑎,𝑏 𝜕𝑦² 𝑎,𝑏 )
- Het is analoog zoals bij 1 veranderlijke
o Je kijken naar de tweede orde afgeleide of het extremum convex/concaaf of een
buigpunt is
3