100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting - Business Research Methods (Y50740) €11,79   In winkelwagen

Samenvatting

Samenvatting - Business Research Methods (Y50740)

 10 keer bekeken  1 keer verkocht

Dit document bevat volledige en duidelijke notities van alle lessen van het vak Business Research Methods gegeven door Ma Frank en Kathleen Cleeren in KULeuven Antwerpen. Dit is in januari een openboek examen. Dit is een samenvatting voor alle studenten die een Engelse Master doen.

Voorbeeld 4 van de 41  pagina's

  • 30 november 2023
  • 41
  • 2023/2024
  • Samenvatting
avatar-seller
diedevdm
BUSINESS RESEARCH METHODS – PROF CLEEREN
Inhoudsopgave
1 linear regression analysis................................................................................................................. 2
1.1 When to use a linear regression? ............................................................................................ 2
1.2 Creating dummy variables ....................................................................................................... 3
1.3 Example linear regression ....................................................................................................... 4
1.4 Linear regression in Stata ........................................................................................................ 5
1.4.1 Model diagnostics – Steps ............................................................................................... 6
1.5 Model comparison approach ................................................................................................ 13
2 Research methodology: Moderation and mediation ................................................................... 15
2.1 What is moderation? ............................................................................................................. 15
2.2 How to test for moderation? ................................................................................................. 16
2.3 What is mediation? ............................................................................................................... 17
2.4 How to test for mediation according to Baron and Kenny .................................................... 18
2.5 Sobel test and bootstrapping ................................................................................................ 20
2.5.1 sobel test ....................................................................................................................... 20
2.5.2 bootstrapping ................................................................................................................ 21
2.6 examples ................................................................................................................................ 22
3 Logistic Regression......................................................................................................................... 23
3.1 example logistic regression ................................................................................................... 24
4 Factor Analysis ............................................................................................................................... 28
4.1 Introduction to factor analysis............................................................................................... 28
4.2 Factor analysis in Stata .......................................................................................................... 28
4.2.1 running fa in 5 steps ...................................................................................................... 28
4.3 example ................................................................................................................................. 29
4.3.1 exercise .......................................................................................................................... 34
5 panel data ...................................................................................................................................... 37
5.1 Different types of data........................................................................................................... 37
5.2 panel data .............................................................................................................................. 37




1

,1 LINEAR REGRESSION ANALYSIS
1.1 WHEN TO USE A LINEAR REGRESSION?
Linear regression versus logistic regression?




* Categorical variables need to be converted to dummy variables (binary: 1/0)!

 First: think which technique is valuable before starting analysing
 Dependent: what you want to explain
 Independent: variables that explains
 Metric: variable has not categories and any value can be possible --> numbers don’t mean
anything
 Categorical: you have different categories --> every category get a number so the numbers
have a meaning
 Categorical independent variable = create dummy variables
 More than 2 groups: multinomial logistic regression (we will not discuss this)
 Less than 2 or 2 groups: binary logistic regression




 ANOVA: typical technique to analyse experimental data
Exercises
1) a person´s decision to buy a private (store) label
Survey:
‘I tend to buy private labels very often (8 to 10 of my grocery purchases is a private label)’
O Yes
O No
 Private label: brand that is offered by the store (e.g. Carrefour brand)
 Which technique are we using to analyse this?
Binary logistic regression because our dependent variable has 2 groups and some of the customer
characteristics are not metric




2

,2) Someone´s attitude towards buying private label (or store) products
Survey:
‘I tend to buy a lot of private labels’
1 2 3 4 5 6 7 (1= totally disagree.. 7 = totally agree)
 Which technique are we using to analyse this?
Likert scale: these numbers have a meaning (because 7 agrees much more)
Linear regression analysis
Metric
3) someone´s attitude towards buying private labels
Survey:
‘I am a person who:
O buys private labels 8 to 10 times in 10 grocery purchases
O buys private labels 4 to 7 times in 10 grocery purchases
O buys private labels 1 to 3 times in 10 grocery purchases
O buys private labels 0 times in 10 grocery purchases
 Which technique are we using to analyse this?
Categoric dependent variable
Independent variable: there is at least 1 categoric variable (gender)
Multinomial logistic regression: dependent is categorical and has more than 2 groups
 → You can use different questions to measure it

1.2 CREATING DUMMY VARIABLES
- Transform categorical independent variables into dummy (1/0) variables (aka indicator
variables) in a linear (and logistic) regression
- Dummy variable trap!
▪ # dummies = # response categories – 1
- Gender: Male:
O Male (1) O Yes (1)
O Female (2) O No (0)

 Dummy variable = 0/1 variable
 If we have 3 categories we only include 2 (male, female, others --> male and female) → WHY?
Because of perfect multicollinearity if we include 3 variables. If we have 3 categories, we only
need info from 2 categories because we can predict information for the 3the one based on the
other 2.




Use ‘tabulate’ and ‘generate’ command


- The command ‘tabulate+generate’:
▪ Returns frequencies of ‘gender’
▪ Automatically recodes into
dummy variables



3

, - Two new dummy variables appear in the ‘variables’ window
 Stata creates a dummy variable for each category




- Age:
O < 20 (1)
O 20-35 (2)
O 36-50 (3)
O > 50 (4)
- How many dummy variables?




Use of i.prefix in stata
- i. prefix before the name of the variable can be used in many commands in STATA
▪ F.e. i.gender or i.age
- i.prefix makes sure that the specified variable is treated as a categorical variable
- STATA will include the right numner of dummy variables in the analyses

1.3 EXAMPLE LINEAR REGRESSION
- The manager of a pizza restaurant wants to research the impact of different factors on consumer
satisfaction [Satisfaction].
- On the basis of discussions with employees, 5 factors
- were identified that could play a role:
▪ Reception [reception]
▪ Service [service]
▪ Waiting time [waiting time]
▪ Quality of the food [food quality]
▪ Price [price]


4

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper diedevdm. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €11,79. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67096 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€11,79  1x  verkocht
  • (0)
  Kopen