100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Exam Guide for Applied Multivariate Data Analysis – Get yourself a Wonderful Grade! €12,49   In winkelwagen

Samenvatting

Summary Exam Guide for Applied Multivariate Data Analysis – Get yourself a Wonderful Grade!

2 beoordelingen
 106 keer bekeken  12 keer verkocht
  • Vak
  • Instelling
  • Boek

Wanna get a brief and clear summary of the Applied Multivariate Data Analysis? Studying the Masters in Psychology at Erasmus University in Rotterdam? Then treat yourself well with this amazing summary. The summary covers (1) lecture notes, (2) SPSS sessions, (3) Simmons' article, (4) all relevan...

[Meer zien]

Voorbeeld 4 van de 127  pagina's

  • Ja
  • 11 december 2023
  • 127
  • 2023/2024
  • Samenvatting
  • Onbekend

2  beoordelingen

review-writer-avatar

Door: luanamoos • 9 maanden geleden

Way too expensive for the lack of information that is given. Explanations are missing and instructions too!

review-writer-avatar

Door: armandovanderbie1 • 10 maanden geleden

avatar-seller
Master in Psycholog

Erasmus University Rotterdam




Applied Multivariate Data-Analysis

Summary of Course Materials




Contents of this document
• Sec on 1. Recommended Study Approach & Overview of Course Concepts (page 2)
• Sec on 2. Notes of Q&A Lectures (page 5)
• Sec on 3. Tips from Assignments, Exercises & SPSS Sessions (page 21)
• Sec on 4. Notes of Regular Lectures (page 25)
• Sec on 5. Notes of SPSS Lectures (page 71)
• Sec on 6. Notes of Simmons and Field Sta s cs Textbook (page 86)




please do not share without permission



ti ti ti y


, AMD Notes




Recommended Study Approach

Steps
• 1. Skim all book chapters
• 2. Watch the prerecorded lecture
• 3. Read the book chapters
• skim Field & see what he adds that is not covered in the lecture
• Field can have quite of a u y wri ng style (eg when he’s making jokes about his cats)
• Field can have quite of a u y wri ng style (eg when he’s making jokes about his cats)
• Field has a lot of details that do not ma er that much
• 3. do the Tutorial Exercises > will be useful for MDA exam
• 4. watch the tutorial mee ngs
• 5. do the SPSS Exercises > will be useful for the SPSS exam
• 6. ask & review ques ons during Q&A sessions
• 7. work on the assignment
• a lot of things that you need to do in the exercises, are also covered in the assignment

Exam

SPSS Exam
• 20 open ques ons
• you have a small window to only report a corresponding result (eg p-value)
• ques ons will specify whether you need to round o & at how many decimals
• one will examine the SPSS output, not the SPSS syntax
• ques ons ask you to do thing > then you do things in SPSS > you report things from the output
• there won't be mul ple choice ques ons on the exam
• you won’t have to produce ‘graphs’ or sca erplots on the exam – maybe you have to create them, and
report your interpreta on of them (eg when checking assump ons)
• will not cover modera on and media on (it doesn’t cover your knowledge of Process)

AMD Exam
• 40 mul ple choice ques ons
• asks you about techniques & comparisons between techniques, theore cal concepts covered in lectures
& Field
• there will be conceptual ques ons and ques ons related to personal interpreta on (Bruno in Q&A
Session 1)
• there is no formula sheet, because the exam won’t emphasise on formulas. Yet, Bruno expects that you
know how to calculate a mean, standard devia on and standard error, as well as the general structure of
a con dence interval (basically, all the basics that you needed to know for the day of Q&A Session 1,
corresponding with Lecture 1)
• we will give you graphs/histograms/tables/SPSS output, and you will have to do the interpreta on of that

AMD exam
• Bruno: it will be described whether a test is one-sided or two-sided (if there is an op on)

please do not share without permission



tifi ti ti tititi tiflti ff ti ti titi tt tt ti ti ff ti ti ti ti ti

, • Bruno: in our course & on the exam, there is almost always no op on > there is only a two-sided test
• Bruno: you won't have to look up t-values > we won’t give you tables with t-values (and then you would
have to look up the cri cal value)
• there might be a ques on about the coding of dummy variables




Course Overview
Concepts Readings

C1 intro 2 53 3 43 6 73
• MSS MSE and SSE Simmons

C2 linear & multiple regression • simple regression analysis 8 51 9 79
• model equation, parameters
• model t (R-square and F-test)
• predictors
• multiple regression analysis
• model equation, parameters
• model t (R-square and F-test)
• predictors
• assumptions of regression analysis

C3 multiple & hierarchical • multiple regression analysis 9 79
regression • more assumptions (and conditions) of
regression analysis
• hierarchical regression (another method of
regression)
• unique contribution of predictors
• regression with categorical predictors
(dummies)

C4 dummies & bootstrapping • regression with dummies 11 41
• bootstrapping
• testing moderation and mediation models
with regression

C5 ANOVA & ANCOVA • assumptions 12 60 13 38

C6 ANCOVA • follow-up analyses 13 38 14 45
• factorial designs

C7 rm-ANOVA 15 70 16 31

C8 mixed-ANOVA 16 31 531




please do not share without permission



fi titi ti

, Overview of exercises and assignments

Exercises

Overview of Exercises
Length Content covered Remarks

E1 19 (1:11, 2:8) samples, sum of squares, standard error, degrees of
freedom

E2 46 (1:8, 2:9, 3:10, b-values, beta-values, R-squared, F-value, case summaries,
4:11, 5:3, 6:5) multi-collinearity, linear regression assumptions, statistical
power

E3 14 (1:7, 2:3, 3:4)

E4 13 (1:7, 2:6)

E5 29 (1:11, 2:11, ANOVA
3:2, 4:5)

E6 23 (1:9, 2:9, 3:3, ANCOVA
4:2)

E7 22 (1:7, 2:6, 3:5, Repeated Measures ANOVA
4:4)

E8 18 (1:5, 2:7, 3:6) Mixed ANOVA


Assignments
• A1 and A2 are very similar
• A3 asks similar ques ons to A1 and A2, but is a bit more elaborate
• all other assignments have again the same structure, but become slightly more elaborate/intense in what
they cover

Assignments – Content Covered

• A1: mul ple regression
• with data screening, inspect outliers, (un)standardised coe cients, standard errors, R2, p-values
• A2: hierarchical mul ple regression
• same as A1
• A3: moderator model, mediator model, bootstrapping > quite di cult
• A4: ANCOVA test > quite di cult
• A5: ANCOVA test with extension (eg table sample characteris cs) > quite di cult
• A6: repeated measures ANOVA
• A7: mixed ANOVA




please do not share without permission




ti ti ffi ffi ti ffi ffi

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper MasterPsychology. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €12,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 73216 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€12,49  12x  verkocht
  • (2)
  Kopen