100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting Inleiding tot biotechnologie en genetica €10,49   In winkelwagen

Samenvatting

Samenvatting Inleiding tot biotechnologie en genetica

 29 keer bekeken  0 keer verkocht

Een volledige samenvatting van het vak 'Inleiding tot biotechnologie en genetica' Volgt de powerpoint + wat de prof heeft verteld tijdens de lessen

Voorbeeld 4 van de 61  pagina's

  • 28 december 2023
  • 61
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (5)
avatar-seller
marthevanlerberghe
Inleiding tot biotechnologie en
genetica



H1: Inleiding
 Biologische systemen: micro-organismen, plantaardige of
dierlijke cellen, tevens enzymen geïsoleerd uit levende wezens
o Micro-organismen: bv. schimmels
o Enzymen geïsoleerd uit levende wezens: bv. mRNA vaccins
 Geen klassiek biotechnologisch product: niet aangemaakt in levende cellen
 Het gaat niet over ‘wat is het product’ maar over ‘hoe is het aangemaakt’
o NIET: traditionele agricultuur en veeteelt
 Biotechnologie: gebruik en manipulatie v. biologische systemen
o Bereiding natuurlijke grondstoffen en biomassa
o Het gaat niet over ‘wat is het product’ maar over ‘hoe is het aangemaakt’
 Aanmaak via chemische synthese: chemische risico’s
 Aanmaak via biologische synthese: biologische contaminanten (=stoffen die onbedoeld
ergens terechtkomen)
 Vroeger: onbewust gebruik maken van bacteriën en gisten
o L. Pasteur: micro-organismen zijn verantwoordelijk voor bepaalde omzettingen
o Bv. verkeerde gisten in druiven tijdens productie wijn: omzetting in azijn ipv wijn
 Fermentatie
o Afbraak nr kortere ketens suikers
o Opkoken: micro-organismen die spontaan aanwezig zijn, afdrogen
o Gisten toevoegen, gisten gebruiken suikers en zetten om naar CO 2 en alcohol
 Gisten kunnen max. 12-13% alcohol aan, anders toxisch voor gistcel
 Exponentiële toename v. gisten
 Conc alcohol stijgt, conc gisten daalt (alcohol is afbraakproduct v. gisten)
 DNA manipuleren
o Wijzigingen (in het genoom) v. bepaalde cellen
o Recombinante proteïnen aanmaken op industriële schaal
o Lichaamseigen moleculen in grote hoeveelheden
o Recombinante technieken
 Vaccins, mAb & enzymen
o Gewone biologicals: bv. bloedafgeleide producten
 Deel plasma opgezuiverd om als GM te gebruiken
o Biotechnologische producten: bv. bepaalde antibiotica, bepaalde vaccins
 Aanmaak: micro-organismen manipuleren zonder genetische informatie te wijzigen
o Recombinante producten: bv. insuline
 Menselijke eiwitten produceren + gebruiken als GM

 Insuline
o Aanmaak in zeer beperkt aantal cellen
 Gen dat hiervoor codeert wel aanwezig in alle cellen, maar wordt enkel geproduceerd
door β-cellen in de pancreas
o Genen in genoom worden gestuurd door promotoren
 Af-/aanzetten promotoren door omgevingsfactoren, daardoor zorgen ze ervoor dat
sommige β-cellen wel insuline aanmaken en andere niet
o In het begin geen methionine (=startcodon)

,  Eiwitten onderworpen aan post-translationele modificaties (eiwit synthetiseren en
wijzigen)
 Stuk wegknippen van het eiwit
 Start: signaalsequentie  zorgt ervoor dat eiwit
ergens in het lichaam terechtkomt, wordt er
afgeknipt
o A-keten en B-keten met daartss. een connecting peptide
(posttranslationeel: wegknippen)
 Insuline actief in lichaam: enkel A- en B-keten
 Door disulfidebruggen aan elkaar gehouden
 Interne disulfidebrug
 Analyse biogene producten: belangrijk  kwaliteitscontrole
o Risico op contaminatie
o Analyse eiwitten complexer dan analyse klassieke GM


H2: DNA/RNA
DNA-structuur:
 Primaire structuur = polynucleotide-structuur (oligonucleotide)
o Met 3’-5’-fosfodiëster verbinding tss. nucleotiden
o Suiker-fosfaatskelet met basen gebonden op C 1’ vd. suikermolecule
o Basen bepalen DNA-sequentie
 Secundaire structuur = 2 anti-parallelle ketens
o Watson en Crick model
o Dubbelstrengig
 Enkele virussen enkelstrengig DNA
 Gebieden v. complementariteit met zichzelf
 Interne dubbele helix haarspeld structuren
o 5’  3’
o Ketens samengehouden door H-brug vorming tss. complementaire basen
 A – T (dubbel gebonden)
 G – C (driedubbel gebonden)
 A & G: purines
 C & T: pyrimidines
 Veel genomen: circulaire DNA-moleculen
o Bv. bacteriële genomen, sommige virussen, sommige bacteriofagen & plasmiden
o Plasmiden: los van eigen genoom mee overgeërfd
o Bacteriofagen: fasen in leven waarbij DNA circulair is, fasen in leven waarbij DNA niet
circulair is
o Voor delen: DNA verdubbelen
o Genoom mens: lineair, bij DNA-replicatie en celdelingen een extra probleem
 NIET bij circulair genoom


Denaturatie-Renaturatie
 Denaturatie
o Reversibel proces
o Originele structuur gaat verloren
o H-bruggen worden verbroken (2 strengen laten los)

,  Thermisch: opwarmen & afkoelen
 Onbeperkt herhalen
 pH wijziging: H-brugvorming is afh. vd. pH van het milieu
 pH zuur: DNA-strengen laten los
 pH alkalisch: DNA-strengen komen terug samen
 Te sterk zuur of te sterk alkalisch: DNA breekt af
 Chemische moleculen onderhevig aan afbraakreacties
 Toevoegen additionele stoffen aan buffer
 DNA-strengen destabiliseren door ureum of formamide
 Tm: smelttemperatuur
o Temperatuur waarbij helft vd. basen ongepaard zijn (2 strengen niet volledig los van elkaar)
o Tm stijgt naartmate [G][C] gehalte toeneemt
 A-T: 2 H-bruggen worden gevormd
 G-C: 3 H-bruggen worden gevormd
 Hoe meer G-C bindingen, hoe stabieler de binding, hoe meer E toevoegen om ze uit
elkaar te krijgen, Tm stijgt
o Renaturatie
 Gedenatureerde strengen associëren opnieuw bij 25°C onder Tm
o Volledig denatureren (afbreken, T verhogen)  renaturatie tot Tm (helft basenparen
ongepaard)
 Tm-waarde volgen en meten (want hoeveelheid licht verandert in enkelstrengige vs.
dubbelstrengige configuratie)  zie grafiek
o Spectofotometer
o Cuvet zonder toegevoegde vloeistoffen en absorptie meten bij 260 nm
o Waarde absorptie bij kamerT = 1
o Cuvet geleidelijk aan opwarmen
o Relatieve absorptie blijft 1 (tem. 60°C blijft absorptie hetzelfde als bij kamerT)
o Verder opwarmen: absorptie neemt toe (ongeveer 1,4)
 Basen in dubbelstrengige DNA molecule is in totaliteit iets minder absorberend dan
dezelfde basen in een enkelstrengige DNA molecule (enkel: absorptie stijgt)
o Tm: helft basen enkel., helft basen dubbel. (helft van de curve)
o Verder verwarmen: curve wordt plateau
 Dit voorbeeld: alle DNA is enkel. geworden bij 75-80°C
 Onder 94°C: niet-natuurlijk stuk DNA (poly d(A-T)), bestaat uit dubbel. dat enkel uit A-
en T-basen bestaat, enkel 2 H-bruggen)
 Dit is de zwakste binding die we kunnen hebben
 94°C: volledige denaturatie
 Onder Tm: volledige renaturatie
 Grafiek rechts: correlatie tss Tm en percentage [G][C]
o 0% [G][C]: Tm is ongeveer 70°C
o 50% [G][C]: Tm is ongeveer 90°C
o 100% [G][C]: Tm is >100°C
o 94°C: al het natuurlijk DNA uit levende organismen
is gedenatureerd
o Spectrofotometer: hoeveelheid DNA inschatten
 Absorptie UV-licht
 1 OD260nm = ongeveer 50 µg/ml dubbelstrengig
DNA (Wet Lambert B.) + ongeveer 33 µg/ml
enkelstrengig DNA (schatting)
 Zuiverheid DNA: verhouding OD260/OD280 = 1,8 (bij zuiver DNA)
 OD = optische densiteit

,  Absorptiespectrum: over een range van golflengtes opnemen hvl stof absorbeert bij
desbetreffende golflengtes in grafiek
 Reversibel proces
o 94°C: DNA-strengen komen los van elkaar = denaturatie
o T ver onder Tm: DNA-strengen komen terug bij elkaar = renaturatie
 Renaturatie beïnvloedt door: spelen met T + toevoegen v. kationen
 Hoe hoger conc. v. DNA, hoe sneller renaturatie doorgaat
 Homologe renaturatie
o Met volledig stuk complementair DNA (2 complementaire strengen; geen foutieve basen)
 Conc. DNA hoger  sneller
 Strengen dichter bij elkaar  sneller
o Kationen  verlagen elektrostatische afstoting  renaturatie  hogere Tm
 2 DNA strengen: relatief hoge negatieve lading door fosfaat-suiker skelet
 Fosfaatgroep erop zijn bij fysiologische pH ook negatief geladen
 Kationen zorgen voor neutralisatie elektrostatische afstoting
 Heterologe renaturatie
o Met niet volledig identisch of complementair stuk DNA (fout tijdens renaturatie)
o Tm: -1,4°C/per mismatch (mismatch = fout in complementariteit tss. 2 strengen)
 Indien fout in complementariteit tss. 2 strengen die je samen wilt laten komen
 T waarbij je renatureert moet je lager zetten dan bij homologe renaturatie
 Primers toevoegen (enkelstrengig)  mengen met DNA-staal patiënt (staal dat je wilt testen)
o Stukken renatureren met DNA patiënt door afkoeling tot onder Tm-waarde
o Synthetische stukken: volledig of deels complementair


DNA-replicatie = vermenigvuldigen v. DNA
 Voor celdeling: beide dochtercellen die ontstaan hebben volledig genoom
o Snelheid: 50 nucleotiden/sec.
 Gebeurd op iedere plaats in genoom waar replicatie start
 Genoom: bestaat uit chromosomen  replicatie start tegelijk op beide chromosomen
 Snelheid is dus sneller: 50 nucleotiden/sec. gebeurd op verschillende plaatsen in
genoom + gaat in 2 richtingen
o DNA-basenparing: A-T, G-C
 Complementariteit
o DNA-templating: DNA-strengen gaan uit elkaar tijdens replicatie
 Denaturatie zonder verwarmen, dmv. enzymen
 Beide strengen gebruiken als template
o DNA-polymerase
 3’-5’ richting
 Strengen uit elkaar trekken
 Nieuwe complementaire strengen aanmaken
 Exonuclease activiteit: stukje RNA primer wegknippen + vervangen door DNA-streng
 Thv. Okazaki-fragmenten
o dNTPs = deoxyribonucleotide trifosfaten
 Bouwstenen, voldoende nodig om snelheid v. inbouwen vd. nucleotiden te behouden
o Semi-conservatief
 Nieuwe dubbele streng: nieuwe streng + oude streng
o Replicatievork
 Asymmetrisch
 ‘leading’ streng
 ‘lagging’ streng

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper marthevanlerberghe. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €10,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67474 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€10,49
  • (0)
  Kopen