Statistiek 1 – Deel 2
Hoofdstuk 8: basisbegrippen kansrekening & axiomatische kansrekening
Nut van kansrekening:
- Beheersing van onzekerheid
o Risico’s kwantificeren d.m.v. kansen
Focus op stochastisch proces
Stochastisch proces:
- Uitkomst is onzeker, hangt af van het toeval
o Bv. opgooien van een eerlijke dobbelsteen en aantal ogen noteren
o Bv. politieke voorkeur vragen aan voorbijganger
Deterministisch proces:
- Uitkomst is zeker, hangt niet af van het toeval.
o Bv: vaas gevuld met rode knikkers, geblinddoekt knikker kiezen en kleuren noteren
o Bv: politieke voorkeur vragen aan N-VA lid.
Bv: opgooien van een eerlijke dobbelsteen en aantal ogen noteren: stochastisch proces
- Uitkomstenruimte S = de verzameling van alle mogelijke uitkomsten
o Bv: S = {1, 2, 3, 4, 5, 6} (‘scample space’)
Toevalsgebeuren
Toevalsgebeuren/gebeurtenis = een (deel) verzameling van mogelijke uitkomsten
Bv: B = {2, 4, 6 } = {even aantal ogen gooien};
A = {1} ;
S = {1, 2, 3, 4, 5, 6} = {minder dan 7 gooien};
∅ = lege verzameling ‘fi’
= (negatief aantal ogen gooien)
Terminologie: een toevalsgebeuren A “doet zich voor” als de uitkomst van een stochastisch proces
een element is van A.
Elementair toevalsgebeuren = gebeurtenis die slecht 1 element bevat
- Bv: A = {1} is een elementaire gebeurtenis
Samengesteld toevalsgebeuren = gebeurtenis die meerdere elementen bevat
Bv: B = {2, 4, 6} = (even aantal ogen gooien)
Machtsverzameling
Machtsverzameling M(S) = bevat alle mogelijke gebeurtenissen uit S
- Bv: opgooien 1 eerlijke dobbelsteen:
- M(S) = { ∅, {1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, ..., {1,2,3}, {1,2,4}, … , {1,2,3,4,5,6}}
#M(S) = aantal elementen van M(S)
- Als S bestaat uit n uitkomsten, dan bestaat de machtsverzameling uit 2n elementen
Notatie: als #S = n → #M(S) = 2n
▪ Bv: opgooien 1 eerlijke dobbelsteen: #S = 6 → #M(S) = 26 = 64
1
,Unie
Bv: geïnteresseerd in even aantal ogen of aantal ogen kleiner dan 3 → A = {2, 4, 6} en B = {1, 2}
A of B doet zich voor als de uitkomst ofwel tot A ofwel tot B behoort.
Notatie: A ∪ B (‘A unie B’)
→ A ∪ B = {1, 2, 4, 6}
Doorsnede
Bv: geïnteresseerd in even aantal ogen en hoogstens 4 ogen → A = {2, 4, 6} en B = {1, 2, 3, 4}
A en B doen zich samen voor als de uitkomst zowel tot A als tot B behoort
Notatie: A ∩ B (‘A doorsnede B’)
→ A ∩ B = {2, 4}
Bv: C = {1} en A = {2, 4, 6}
→ C ∩ A = ∅ (lege verzameling)
(C en A zijn ‘disjunt = geen gelijkenissen’)
Complement
Bv: niet geïnteresseerd in even aantal ogen → A = {2, 4, 6} mag zich niet voordoen
Het complement van A bestaat uit alle uitkomsten die niet in A zitten
Notatie: Ac = S ∖ A
(‘A complement’ = ’S min A’)
→ Ac = {1,3, 5}
Bv: B = {2, 3, 5, 6}
→ Bc = {1, 4} (want S = {1, 2, 3, 4, 5, 6})
Disjunct
A en B zijn disjunct/mutueel exclusief als hun doorsnede leeg is (niets gemeenschappelijks)
Bv: A = {1} en B = {2, 4, 6} zijn disjunct
Want A ∩ B = ∅ ( ø = ‘fi’ = lege verzameling)
Exhaustief
G1, G2, G3 zijn exhaustief als hun unie gelijk is aan de uitkomstruimte S
Bv: G1 = {1}, G2 = {2, 4, 6} en G3 = {2, 3, 5} zijn exhaustief, want G1 ∪ G2 ∪ G3 = {1, 2, 3, 4, 5, 6} = S
2
,Disjunct EN exhaustief
G1, G2, G3 zijn disjunct en exhaustief als ze elkaar niet overlappen en hun unie gelijk is aan de
uitkomstruimte S
Bv: G1 = {2}, G2 = {1, 3, 4} en G3 = {5, 6}
→ G1, G2 en G3 vormen samen een partitie van S
Partitie / volledig stelsel
De gebeurtenissen G1, G2, …, Gk vormen een partitie / een volledig stelsel als ze
1. Exhaustief zijn
2. Twee aan twee desjunct zijn
Bv:G1 = {1}, G2 = {2, 4, 6} en G3 = {3, 5} vormen een partitie
Speciaal geval:
Bv: {1}, {2}, {3}, {4}, {5} en {6} vormen een partitie de elementaire gebeurtenissen horende bij
een kansexperiment vormen steeds een partitie (want ze zijn mutueel exclusief en
exhaustief)
Kans
Kans = probability, probabilité → ‘P’
→ de kans P(G) drukt uit hoe waarschijnlijk of onwaarschijnlijk de gebeurtenis G is
Bv: P ({2 gooien met eerlijke dobbelsteen}) = 1/6
- P (G) = een reëel getal tussen 0 en 1
- Met elke gebeurtenis G kan een kans P(G) geassociaard worden
P
G P (G)
- P is een ‘machine’ die met elke input G een output P(G) associeert
P = functie die met elke G een reël getal P(G) tussen 0 en 1 associeert
G → functie P → P(G)
(element uit M(S)) (getal tussen 0 en 1)
{2} → funtie P → P({2}) = 1/6
Kansdefenitie
1) Subjectieve kansdefinitie (Gokkans)
- Bv: ‘kans om lotto te winnen is erg klein’
- Vaak gebaseerd op ervaring, vaag
2) Empirische kansdefinitie (Zweetkans)
- Bv: kans om 2 te gooien bij eelijke (?) dobbelsteen
- Dobbelsteen heel vaak opwerken (n→ oneindig)
𝑓
- Geregeld 𝑛𝑖 berekenen (= benadering voor kans)
𝑓
- Kijken waar de waarden 𝑛𝑖 naartoe gaan als n toeneemt → de ‘limietwaarde’ is de gezochte
kans.
𝑓
- Formule: 𝑃(𝐴) = lim 𝑛𝑖
𝑛→∞
3
, 3) Theoretische kansdefinitie van Laplace (weetkans)
- Bv: kans om 2 te gooien bij eerlijke (!) dobbelsteen
- # gunstige uitkomsten = 1
- # mogelijke uitkomsten = 6
- P({2}) = 1/6
#𝐴 # 𝑔𝑢𝑛𝑠𝑡𝑖𝑔𝑒
𝑃(𝐴) = =
# 𝑆 # 𝑚𝑜𝑔𝑒𝑙𝑖𝑗𝑘𝑒
Opmerking : Laplace veronderstelt dat elke uitkomst even plausibel is
→ enkel toepassen bij eerlijke dobbelsteen
4) Axiomatische kansdefinitie:
De reële functie P moet voldoen aan 3 axioma’s
o 0 ≤ P(A) ≤ 1
o P(S) = 1
o Als A en B desjunct gebeurtenissen zijn (A ∩ B = ø), geldt dat P(A ∪ B) = P(A) + P(B)
bv: A = {2}; B = {1, 4} → A en B disjunct
P(A) = 1/6 ; P(B) = 2/6;
P (A ∪ B) = P({1, 2, 4}) = 3/6 = 1/6 + 2/6
→ Abstracte definitie; kansregels gebruiken
1e kansregel:
Complementregel: P(Ac) = 1 – P(A)
2e kansregel
Somregel: P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
3e kansregel
Productregel:
P(A ∩ B) = P(𝐴|𝐵) . P(B)
P(A ∩ B) = P(𝐵|𝐴) . P(A)
→ voorwaardelijke kans nodig
→ ‘A priori’ vs ‘A posteriori’
P(𝐴|𝐵) = ‘A posteriori’ kans P(𝐴|𝐵) . P(B) → P(B) = ‘A priori’ kans
→ P(𝐴|𝐵) = ‘de kans op A gegeven B’
𝑃 (𝐴 ∩𝐵)
→ P(𝐴|𝐵) = 𝑝(𝐵)
𝑃(𝐵∩𝐴) 𝑃(𝐴∩𝐵)
Of P(𝐵|𝐴) = =
𝑃(𝐴) 𝑃(𝐴)
(On)afhankelijkheid van gebeurtenissen
Bv: Man zijn en bril dragen:
- Heeft een man een hogere/lagere kans op het dragen van een bril (dan een vrouw)?
- Neen, want P(𝑏𝑟𝑖𝑙|𝑚𝑎𝑛), zal niet systematisch hoger/lager zijn dan P(bril)
- ‘man zijn’ en ‘bril dragen’ zijn onafhankelijke gebeurtenissen
4