College aantekeningen Statistiek Deel 1 (GEO2-2217)
7 keer bekeken 0 keer verkocht
Vak
Statistiek (GEO22217)
Instelling
Universiteit Utrecht (UU)
Hier vind je de aantekeningen van de lectures (hoorcollege's) van het eerste deel van het vak Statistiek (statistics), dus tot de mid-term, wat gegeven wordt op de Universiteit Utrecht volgens de cursuscode GEO2-2217 voor studenten van GSS en NW&I. Hopelijk helpt het je op weg.
Dr. maryse chappin & msc. paula schipper
Samenvatting lectures 2 tm 7 (deel 1)
Onderwerpen
descriptive statistics
explained variation
eta2
confidence interval
anova
Geschreven voor
Universiteit Utrecht (UU)
Natuurwetenschap en Innovatiemanagement
Statistiek (GEO22217)
Alle documenten voor dit vak (5)
Verkoper
Volgen
ishtarderksen
Voorbeeld van de inhoud
Lectures Statistics
Lecture 2: Descriptive Statistics 3
Statistics: why and when? 3
Statistical toolkit 3
Example: measuring differences in wind 3
Measuring wind 4
Lecture 3: Explained variation 7
Prediction errors 7
Variation analysis 7
Eta2 = proportion explained variation 8
Linear regression 9
Testing the model: R^2 10
Lecture 4: Theory of estimates and testing 12
Population vs. sample 12
Characteristics probability distribution sample mean M 13
Standard error of the mean 13
Theory of estimates 13
T-value for M 15
Estimate 15
Interval estimate - Confidence interval (CI) 16
90% Confidence interval for µ if σ is known 17
90% Confidence interval for µ if σ is unknown 17
Testing hypotheses 18
Testing with exceedance probability 18
Testing with critical value 20
Testing with CI 21
Lecture 5: Comparing two groups 22
Type I and Type II error 24
Comparing two groups 24
2 groups of paired measurements: 25
Independent groups 27
Sample-effect size 30
Lecture 6: Comparing two groups 30
Two-tailed vs one-tailed? 31
Analysis of Variance (ANOVA) 34
Planned comparisons 2 combinations 37
Lecture 7: ANOVA with controls 39
Repetition one-way ANOVA 39
Orthogonal contrasts 41
Polynomial contrast 41
Post-hoc comparisons: 42
Control for other variable(s) 42
Decomposition 2-way ANOVA 43
2-way ANOVA- Follow up analysis 44
1
,Lecture 2: Descriptive Statistics
Statistics: why and when?
- techniques for processing (large amounts of) data in different situations
- climate data (climate research) KNMI
- experimental data (treatment-control groups)
- survey data etc.
- less common in qualitative research
- open interviews result in data that is less structured, and less quantitative
Statistical toolkit
Lots of tools!
- different ways to measure
- different types of data
- different types of questions
- number of groups (1 or more)
- number of explanatory (independent)
- etc,
- per situation:
- what tool is most appropriate?
- how to use this tool?
- how to interpret the results?
- how to draw your conclusions
Example: measuring differences in wind
- Are winds stronger at the coast, compared to the interior?
- problem how to measure?
- at what height?
- using what instrument?
- using what scale?
- problem: how to deal with variability
- many places
- many moments (day, months, seasons)
- many times of the day
Limitations of measurements
- coast = den helder
- interior = de bilt
- measurement at every hour in both places
- number of measurements = 2x 20 x 365 x 24 = 350400
- by means of a sample you can try to detect differences and similarities between the coast
(den helder) and the interior (de bilt).
- this will not give the answer to the general question
2
,Statistical techniques
1. describe / summarize the data pertaining to the two groups
- tables, graphs, metrics = draw your conclusions regarding similarities / differences
= descriptive statistics
2. can you generalize the findings for the sample to your population?
- is the observed difference more than a coincidence? (is it statistically significant?)
- what the estimated size of the difference between the populations?
= inductive statistics
Measuring wind
Measurement 1: Beaufort scale
- from 0 to 12 Bft
- 0: smoke rises straight up
- 6: difficult to hold on to your umbrella
- 9: root tiles are blown away, small children can hardly stay upright
- higher score = stronger wind
- level of measurement = ordinal (interval between numbers is not equal)
Measurement 2: Wind velocity in m/sec or km/h
- scale from 0 to infinity (in practice to 50/200)
- similar intervals on the scale indicate similar difference in wind velocity
- level of measurement = interval
- absolute zero is meaningful in this case
- a score that is p times as high, indicates a wind velocity that is p times as high
- level of measurement = ratio
Compare measurements:
km/h scale =
similar intervals represent similar differences in wind strength
Beaufort scale =
order is correct but differences between higher scale values is much larger than
differences between lower scale values
Measurement wind 3: used for windsurfing
- 0 = too strong to wind surf
- 1 = too weak to wind surf
- 2 = good for surf novices
- 3= good for experiences surfers
- 4 = what Dorian van Rijsselberghe likes
- order of scores not congruent with order in strength of wind
- level of measurement = nominal
3
, Data matrix
- represent scores in a spreadsheet
- column = characteristics of the variable
- row = case or observation => scores on the variable
-Frequency tables
- make different classes
- Bar chart
- graphic representation of the frequency table
- polygons
- connected lines (continuous phenomena)
1. Cumulative distribution
Difference measure Change = Max CP
2. differences between centres relative to distribution
- difference means
Statistical toolbox
- mean
- dispersion
- variance
- standard deviation
Example: 2 movies, both movies are graded by a group of 5 friends
Scores:
- movie 1: 9, 6, 6.5, 7.5, 5.5, 9,5
- movie 2: 7, 8, 8,5, 6,5, 7,5
Calculate mean = the scores / number of scores given = mean
- Both give 7.5
Calculate dispersion = deviation of the individual observations from the mean
- dev = x- X
- Score of 9, so 9 – mean = 1,5
- mean deviation , mean of absolute deviation or mean squared deviation
Calculate dispersion variance = sun of all squares is variation (variance of a sample s2)
- Variance = s2 = SS/Df
SS = sum of squares
Df = degrees of freedom = # of deviations that are free to vary
Dispersion: variance
- variance is a measure for the dispersion of the data
- the average of the squared deviations from the mean
- squaring makes each term positive so that values above the mean do not cancel values
below the mean
- give you a very general idea of the spread of your data
4
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ishtarderksen. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €5,74. Je zit daarna nergens aan vast.