100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Solution Manual for Physics, 12th Edition John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler €17,18   In winkelwagen

Tentamen (uitwerkingen)

Solution Manual for Physics, 12th Edition John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler

 194 keer bekeken  7 keer verkocht
  • Vak
  • Solution Manual
  • Instelling
  • Solution Manual
  • Boek

Solution Manual for Physics, 12th Edition John D. Cutnell, Kenneth W. Johnson, David Young, Shane Stadler

Voorbeeld 4 van de 2077  pagina's

  • 24 april 2024
  • 2077
  • 2023/2024
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • Solution Manual
  • Solution Manual
avatar-seller
CHAPTER 1 INTRODUCTION AND MATHEMATICAL CONCEPTS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS 1. (d) The resultant vector R is drawn from the tail of the first vector to the head of the last vector. 2. (c) Note from the drawin g that the magnitude R of the resultant vector R is equal to the shortest distance between the tail of A and the head of B. Thus, R is less than the magnitude (length) of A plus the magnitude of B. 3. (b) In this drawing the vector – C is reversed relative to C, while vectors A and B are not reversed. 4. (c) In this drawing the vectors – B and – C are reversed relative to B and C, while vector A is not reversed. 5. (c) When the two vector components Ax and Ay are added by the tail-to-head method, the sum equals the vector A. Therefore, these vector com ponents are the correct ones. 6. (b) The displacement vector A points in the – y direction. Therefore, it has no scalar component along the x axis ( Ax = 0 m) and its scalar component along the y axis is negative. 7. (e) The scalar components are given by Ax′ = −(450 m) sin 35.0 ° = −258 m and Ay′ = −(450 m) cos 35.0 ° = −369 m. 8. (d) 9. Rx = 0 m, Ry = 6.8 m 10. R = 7.9 m, θ = 21 degrees 11. (a) The triangle in the drawing is a right triangle. The lengths A and B of the two sides are known, so the Pythagore an theorem can be used to determine the length R of the hypotenuse. 12. (b) The angle is found by using the inverse tangent function, 14.0 kmtan 533.0 kmθ−⎛⎞== °⎜⎟⎝⎠. 2 INTRODUCTION AND MATHEMATICAL CONCEPTS 13. (e) These vectors form a closed four-sided po lygon, with the head of the fourth vector exactly meeting the tail of the first vector . Thus, the resultant vector is zero. 14. (b) The three vectors form a righ t triangle, so the magnitude of A is given by the Pythagorean theorem as 22
xyAA A=+ . If Ax and Ay double in size, then the magnitude of A doubles: () ()2222 2 222 4 4 2 2 .xy x y x yAA A A A A A += + = + = 15. (a) The angle θ is determined by the inverse tangent function, 1tany
xA
Aθ−=⎛⎞
⎜⎟⎝⎠. If Ax and Ay both become twice as large, the ratio does not change, and θ remains the same. 16. (d) The distance (magnitude) traveled by each runner is the same, but the directions are different. Therefore, the two di splacement vectors are not equal. 17. (c) Ax and Bx point in opposite directions, and Ay and By point in the same direction. 18. Ay = 3.4 m, By = 3.4 m Chapter 1 Problems 3 CHAPTER 1 INTRODUCTION AND MATHEMATICAL CONCEPTS PROBLEMS 1. REASONING We use the fact that 1 m = 3.28 ft to form the following conversion factor: (1 m)/(3.28 ft) = 1. SOLUTION To convert ft2 into m2, we apply the conversion factor twice: 2Area = 1330 ft ()1 m
3.28 ft1 m
3.28 ft⎛⎞
⎜⎟⎝⎠2124 m⎛⎞= ⎜⎟⎝⎠ 2. REASONING a. To convert the speed from miles per hour (mi/h) to kilometers per hour (km/h), we need to convert miles to kilometers. This conversion is achieved by using the relation 1.609 km = 1 mi (see the page facing the in side of the front cover of the text). b. To convert the speed from miles per hour (mi/h) to meters per second (m/s), we must convert miles to meters and hours to sec onds. This is accomplished by using the conversions 1 mi = 1609 m and 1 h = 3600 s. SOLUTION a. Multiplying the speed of 34.0 mi/h by a factor of unity, (1.609 km)/(1 mi) = 1, we find the speed of the bicyclists is ()mi miSpeed = 34.0 1 34.0h⎛⎞= ⎜⎟⎝⎠1.609km
h 1m i⎛⎞
⎜⎟
⎝⎠km54.7h⎛⎞= ⎜⎟
⎝⎠ b. Multiplying the sp eed of 34.0 mi/h by two factors of unity, (1609 m)/(1 mi) = 1 and (1 h)/(3600 s) = 1, the speed of the bicyclists is () ()mi miSpeed = 34.0 1 1 34.0h⎛⎞= ⎜⎟⎝⎠ h1609 m
1m i⎛⎞
⎜⎟
⎝⎠1h ⎛⎞
⎜⎟
⎝⎠m15.23600s s⎛⎞= ⎜⎟
⎝⎠ 3. SSM REASONING We use the facts that 1 mi = 5280 ft, 1 m = 3.281 ft, and 1 yd = 3 ft. With these facts we construct three conversion fa ctors: (5280 ft)/(1 mi) = 1, (1 m)/(3.281 ft) = 1, and (3 ft)/(1 yd) = 1. 4 INTRODUCTION AND MATHEMATICAL CONCEPTS SOLUTION By multiplying by the given distance d of the fall by the appropriate conversion factors we find that 6 mi d=()5280 ft
1 mi1 m
3.281 ft⎛⎞
⎜⎟
⎝⎠551 yd⎛⎞+ ⎜⎟⎝⎠()3 ft
1 yd1 m
3.281 ft⎛⎞
⎜⎟⎜⎟⎝⎠10 159 m⎛⎞= ⎜⎟⎝⎠ 4. REASONING The word “per” indicates a ratio, so “0.35 mm per day” means 0.35 mm/d, which is to be expressed as a rate in ft/century. These units differ from the given units in both length and time dimensi ons, so both must be c onverted. For length, 1 m = 103 mm, and 1 ft = 0.3048 m. For time, 1 year = 365.24 days, and 1 century = 100 years. Multiplying the result ing growth rate by one century gives an estimate of the total length of hair a long -lived adult could grow over his lifetime. SOLUTION Multiply the given growth rate by the length a nd time conversion factors, making sure un its cancel properly: mmGrowth rate 0.35 =
d31 m
10 mm⎛⎞
⎜⎟
⎝⎠1 ft
0.3048 m⎛⎞
⎜⎟⎝⎠365.24 d ⎛⎞
⎜⎟⎝⎠ 1y100 y ⎛⎞
⎜⎟⎜⎟⎝⎠42 ft/centurycentury⎛⎞
= ⎜⎟⎜⎟⎝⎠ 5. REASONING In order to calculate d, the units of a and b must be, respectively, cubed and squared along with their numerical values, then combined algebraically with each other and the units of c. Ignoring the values and working fi rst with the units alone, we have ()
() ( )333
2 2m m=
m/s sadcb=→2
m/s()2s⋅2
1m=s Therefore, the units of d are m2/s. SOLUTION With the units known, the numerical value may be calculated: ()
() ( )3
22
29.7m/ s 0 . 7 5 m/ s
69 4.2d== 6. REASONING The dimensions of the variables v, x, and t are known, and the numerical factor 3 is dimensionless. Therefore, we can so lve the equation for z and then substitute the known dimensions. The dimensions [] [] L and T can be treated as algebraic quantities to determine the dimensions of the variable z.

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper solutions. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €17,18. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 66579 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€17,18  7x  verkocht
  • (0)
  Kopen