100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Analyse II - hfst 18 samenvatting €2,99
In winkelwagen

Samenvatting

Analyse II - hfst 18 samenvatting

 25 keer bekeken  0 keer verkocht

Hfst 18: meervoudige integratie gegeven door prof dr ir Jan Baetens Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd

Laatste update van het document: 5 maanden geleden

Voorbeeld 2 van de 8  pagina's

  • 4 mei 2024
  • 13 juli 2024
  • 8
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (5)
avatar-seller
BioIngenieur
Hoofdstuk 18
Meervoudige integratie




Indien je de onbepaalde integraal pakt van fx(x,y)dx, dan moet je erachter + C(y) schrijven want is ifv y

Als je de integraal van fx of fy pakt, kom je in beide gevallen uit op f(x,y)



Oppervlak
Stel je moet het oppervlak van een zwevende rechthoek in het xy-vlak gaan berekenen, is semester 1 zagen we
dat we dit adhv een verschil van enkelvoudige integralen konden doen

 Oplossing = dubbele integraal




 We kiezen bv x-waarden vast en laten dan de y-waarden variëren → dydx  dxdy
 De dubbele integraal zal een getal uitkomen

!!! een dubbele integraal hoort van buiten naar binnen opgesteld te worden en van binnen naar buiten
opgesteld te worden, ook altijd een schets maken! De d dat laatst staat bepaald de vaste grenzen

dydx = integratievolgorde, eerst over y, dan over x met de x-waarden vast gekozen  dxdy

 Moet zien welke integratievolgorde de eenvoudigste integraal oplevert
 Hebt hier ook nog geen functies dus het argument is 1



Bepaal de oppervlakte ingesloten door ____

 Belangrijk om eerst een tekening te maken en te visualiseren welk gebied je zal berekenen
 Dan nadenken over welke grenzen je vast kiest en wat dan de grenzen van de variabele moeten zijn
 Denk ook na over de grenzen en of je de integraal moet opsplitsen
 Bij de tweede integraal moet je de functie dat het oppervlak langs boven begrenst op de plaats van b
schrijven in de integraal, de onderste bij a
 Indien je y vast kiest en x variabel: dxdy, zal je voor de grenzen van dx moeten herschrijven naar x = g(y)



Wissel de integratie volgorde om van een gegeven dubbele integraal bv:

 Je gaat dus van dxdy → dydx dus x kies je vast, y laat je variëren
 Kies je x grenzen maar hier zie je dat je x van 0 – 2 gedefinieerd
wordt door x = y²/4 en van 0 – 4 door x = (y + 4)/2
dus je zal je x grenzen moeten opsplitsen
 Voor de y grenzen moet je de functies herschrijven
opdat je y = ___ bekomt

, Volume
We krijgen nu ∬ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 of ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

 Zal een volume ipv een oppervlak krijgen
 Allemaal balkjes pakken en kijken naar de hoogte dat de balk bereik

Volume onder de grafiek f(x,y) wordt gegeven door:




Met R een gesloten en begrenst gebied in het xy-vlak

V = volume tussen R in het xy-vlak en de projectie van R op f(x,y)

= obv dwarsdoorsnedes met A(x) = oppervlakte van dwarsdoorsnede

= obv balken met dx en dy de breedte en lengte, f(x,y) de hoogte



Stelling van Fubini:




Als er op het examen gevraagd wordt
bereken deze enkelvoudige integraal
van een verschil, herschrijf als
dubbele integraal en pak de
argumenten als grenzen, probeer
dan de integratievolgorde eens om te
draaien, zal wrs makkelijker zijn
Zie extra VB

De grenzen zoeken is het moeilijkste aan de opgave, als je x of y hebt vastgelegd verder redeneren, van waar
tot waar mag y of x nu gaan, van welke waarde tot welke waarde? Of van welke rechte/kromme tot ___, niet
bezig houden met de hoogte maar met de figuur in het xy-vlak = R, de hoogte wordt door f(x,y) bepaald

VB 18.8!!

!!! voor de grenzen van x die variabel zijn: de functie die meest links ligt, ligt ‘onderaan’ dus moet op de
plaats van a komen, want x gedefinieerd door rechtse waarde – linkse waarde

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper BioIngenieur. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €2,99. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53340 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€2,99
  • (0)
In winkelwagen
Toegevoegd