100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Samenvatting - Logica en wetenschapsfilosofie €7,16   In winkelwagen

Samenvatting

Samenvatting - Logica en wetenschapsfilosofie

 16 keer bekeken  0 keer verkocht

Het examen was open boek: deze samenvatting geeft een overzicht van de gehele cursus, kort genoeg om tijdens het examen makkelijk/ snel door te kunnen bladeren en genoeg informatie te geven. Voorbeeldoefeningen, definities en beschrijvingen + uitleg wetenschapsfilosofie (ik raad aan veel oefenin...

[Meer zien]

Voorbeeld 3 van de 19  pagina's

  • 29 mei 2024
  • 19
  • 2021/2022
  • Samenvatting
Alle documenten voor dit vak (4)
avatar-seller
lauravdm1
1



SVT: Logica &
Wetenschapsfilosofie
Logica
De Logica = beoordeling van het menselijk redeneren; reeksen van uitspraken zijn ‘logisch’ als ze
opgebouwd zijn volgens strenge wetten
Een logica = deductief/ formeel systeem; specifieke manier om dat te doen

- Moderne logica: start eind 19e eeuw
- Normatieve studie: opstelling ideale regels van rationeel denken
- Formele aspecten: vormkernmerken, abstractie maken van inhoud
- Deductieve variant: welomschreven set van toegelaten denkstappen



1. Propositielogica (PL)
 Basis van de logica
 Regelsysteem

- Concreet taalgebruik
o formaliseren en abstraheren van de taal (inhoud)
- Herkennen en benoemen van logische structuren

Voorbeeld:

“Als het volgende week regent of sneeuwt, dan speel ik op de wii en kom ik niet naar de les.”

Onderlijnde woorden: bindwoorden; connectieven

Formaliseren: Inhoudelijke elementen achterwege laten (variabele inhoud):

“Als BOEM of BAM, dan KLETS en niet PATS”

Formule:
(p v q)  (r & ~ s)
-> Haakjes dienen enkel voor duidelijkheid


De connectieven (PL)
 voorgesteld als symbolen
 Logische constanten; binden de zin aan elkaar


(a) implicatie: “als p, dan q”: p  q
(b) conjunctie: “p en q”: p & q
(c) disjunctie: “p of q”: p V q
(d) gelijkwaardigheid: “p als en slechts als q”: p≡q
(e) negatie: “niet p”: ~ p

,2


Toegelaten taalafspraken

(OR= orientatie regel)

OR 1: p, q, r… => zinnen en afspraken van PL
OR 2: A (variabel) => willikeurige zin van PL, dan ook ~ A
-> waar of niet waar is niet van belang, de zin moet grammaticaal in orde zijn
OR 3: A en B zijn zinnen, dan ook A &B, A v B, A  B, A ≡ B
OR 4: elke zin van PL voldoet aan OR 1, 2 en 3
 Afspraken die voldoen aan alle 4 de OR; wff (woef) = well formed formula

Opbouw redeneringen

 10 toegelaten primitieve, elementaire redeneerstappen
2 primitieve regels per connectief: Introductieregel (I)
Eliminatieregel (E)



Primitieve regels

- enkel op volledige formules toe te passen (geen deel)

1. Implicatie

( I) voorwaardelijk bewijs: subbewijs starten met A als hypothese, als B in dat subbewijs voorkomt ->
besluit tot A  B

 A (hypothese), …, B / A  B
Specifieke vormverieisten: verticale streep die aangeeft tot hoever de hypothetische redenering
is, horizontale om die af te sluiten

( E) modus ponens (limiet instellen)
als A voorkomt in de loop van een redenering, en A  B -> besluit tot B

 A, A  B / B

- Reïteratieregel (Reït): elke vorige bewijsregel mag in een subbewijs hernomen worden, ALS die
niet in een afgesloten hypothetische redenering staat

2. Conjunctie

(& I) Conjunctie: indien A en B voorkomen in de loop van een redenering -> besluit tot A & B

 A, B / A & B

(& E) Simplificatie: indien A & B voorkomen in de loop van een redenering -> besluit tot A als B

 A & B / A, B

- A en B: willikeurige zinnen van PL
- ‘/ ’ betekend ‘dus’

, 3




3. Disjunctie

(v I) Additie: als A voorkomt in de loop van een redenering, ofwel B -> besluit tot A v B

 A / A v B en B / A v B
laat NIET toe A dan wel B af te leiden uit A v B

(v E) Dilemma: indien A v B voorkomt in de loop van een redenering, en zowel A  C als B  C -> besluit
tot C

 A v B, A  C, B  C / C
“als twee alternatieven dezelfde gevolgen hebben, dan is het gevolg het geval”

4. Gelijkwaardigheid

(≡ I) : als A  B in de loop van een redenering voorkomt, en B  A -> besluit tot A ≡ B

 A  B, B  A / A ≡ B
Enige manier om gelijkwaardigheid te bewijzen, is door beide implicaties te bewijzen

(≡ E) : als A ≡ B in de loop van een redenering voorkomt -> besluit tot A  B en B  A

 A ≡ B / A  B en A ≡ B / B  A
Enige manier om gelijkwaardigheid te analyseren en zo die te gebruiken

5. Negatie

(~ I) reductio ad absurdum (bewijs uit het ongerijmde)
als A  B in de loop van een redenering voorkomt en A  ~ B -> besluit tot ~ A

 A  B, A  ~ B / ~ A
Als je het tegendeel van twee uitspraken kan afleiden (tegenspraak), dan is de negatie van de
eerste uitspraak het geval

(~ E) dubbele negatie: als ~~ A in de loop van een redenering voorkomt -> besluit tot A

 ~~ A / A



Formeel bewijs:
- Begin met premissen (premisse; stelling vaarom je een redenering baseerd)
- Middenin zinnen die verantwoord worden via één van die regels
- Eindigend met de conclusie

 Logisch afleidbaarheidsteken
Afleiden naar r

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper lauravdm1. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,16. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 79271 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,16
  • (0)
  Kopen