100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Experimentation II - Literature/Lectures €5,49   In winkelwagen

Samenvatting

Summary Experimentation II - Literature/Lectures

 103 keer bekeken  3 keer verkocht
  • Vak
  • Instelling

This is an overview of the Experimentation II course. The focus is on the lectures, but the essence of the papers that were discussed in class is also covered. The poster session is not part of this document.

Voorbeeld 2 van de 15  pagina's

  • 13 juni 2019
  • 15
  • 2018/2019
  • Samenvatting
avatar-seller
Experimentation II – Literature & Lecture Slides
General Introduction
Invasiveness Technique
Invasive -Single cell recordings -Deep brain stimulation
-Brain surgery -Pharmacology
-Electro-convulsive therapy
Somewhat invasive -PET -CT
-regional cerebral blood flow (rCBF) -rTMS

Non-invasive -Single pulse TMS -Peripheral recordings
-EEG -Saliva checks
-MEG -Neural network modeling
-Optical imaging -Behavioral genetics
-(f)MRI -Affect/Mood induction
-Eye tracking -Circadian rhythm



Temporal and Spatial Resolution of some different neuroscientific techniques




Functional analysis (EEG/ERP)
Woodman & Lecture slides
Electro-encephalography
When a neuron excites another neuron, excitatory neurotransmitters attach to the postsynaptic
dendritic receptors. This causes the receptors to open and current will flow into the postsynaptic neuron
cell body, creating a negativity around the synaptic cleft and the dendrite. Simultaneously, current flows
outside of the postsynaptic cell body, resulting in positivity there. This contrast between the positivity
and negativity so close to each other is referred to as a dipole. If this signal is strong, lasts long enough,
has the right orientation and synchronicity, it can be picked up by EEG electrodes. Subcortical structures
cannot be picked up on by EEG.

, The electrical activity in the brain is never
random. EEG mostly picks up on distinct rhythms
of oscillations (= rhythmic waves in electrical
current) which vary in frequency (slow-fast | 0-70
Hz), amplitude (low-high | -50 – 50 mV), phase
(in the sine cycle | 0-360 degrees) and timing.
Specific oscillations have been identified and
related to specific behaviors (e.g., alpha waves
are related to relaxation). EEG can identify the
location (topography) of the signal, although it is
not very spatially specific. You can also model the
source of the signal as a dipole.



The raw EEG signal is a sum of all the frequencies that are being picked up in that area. Fourier
transformation can split this sum back up into its part, allowing us to study the different frequencies
separately.
Different oscillations can show coherence or synchronization, which often reflects communication
between brain areas. Slower waves can carry faster waves to travel further along the brain.

When measuring EEG you always have to have reference electrodes which you can use to subtract noise
from your signal. Which reference place you choose can influence your results. You can place them
somewhere on the body (mastoids, nose, earlobes, shoulder) or you can take the average of all your
electrodes and subtract that.

The electric signal that is being picked up is referred to as a brain potential. Thus, an EEG session results
in a long time series of brain potentials on all the places the electrodes have been put. EEG signals that
occur systematically and synchronous to a meaningful event (e.g., presentation of a stimulus, or
moment of response) are called event-related potentials (ERPs).

ERPs are extremely small. All brain potentials have to be amplified before they can be digitized and
shown on a computer screen. However, because they are so small they are also very easily drowned by
noise. It is therefore very important that you take precautions to avoid noise and filter out noise during
analysis (prevention is better).

Maximize signal:
 Minimize skin impedance by scratching the skin with a blunt needle
 Maximize conductivity by using electrode gel
 Acquire enough trials
 Always check your set-up (broken electrodes)
Minimize noise:
 Put electrodes around the eyes so you can correct for eye movement during analysis
 Guard your experimenting room from power sources (e.g., elevators, new computers)
 Minimize motion
 Check that your electrodes are adequately connected
 Make sure the cap is in the right location
 Keep the experimenting room cool to avoid sweating
Cleaning EEG data

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper MaaikePsy. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €5,49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 77254 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€5,49  3x  verkocht
  • (0)
  Kopen