SAMENVATTING ALGEMENE
CHEMIE
1. INLEIDING
Wetenschappelijke methode
1. Observeren
Natuurlijk/ experimenteel
2. Hypothese opstellen
Voorlopige verklaring van natuurverschijnsel
3. Uittesten
Hypothese testen d.m.v. invloed factoren na te gaan in gecontroleerde omstandigheden
-> natuurwetten = vastgestelde wetmatigheden in bep. verschijnselen (universeel +
onveranderlijk)
-> hypothese herzien indien ontoereikend
4. Theorie of model
Verklaart natuurwetten en doet voorspelling rond natuurfenomenen
5. Experiment opzetten
6. Theorie aanvaarden
+ -> aanvaarden, tot latere experiment aantonen dat ze ontoereikbaar is
- -> theorie wijzigen
2. STRUCTUURMODEL VAN DE MATERIE
2.1 MATERIE VAN ZUIVERE STOFFEN
Materie = alles wat massa heeft
Stof = heeft fysische constanten -> bepalen de stofeigenschappen
Mengsel -> meerdere componenten
2.1.1 SOORTEN MENGSELS
Homogene
o D < 10-9
o Verschillende componenten zijn niet van elkaar te onderscheiden
Colloïdale
o Overgang tussen homogeen en heterogeen
Heterogene
o D > 10-7
o Min. 1 component te onderscheiden
Grove = vast + vast
Suspensies = vast + vloeistof
Emulsies = vloeistof + vloeistof
Nevel = vloeistof + gas
Rook = vast + gas
Schuim = gas + vloeistof
,2.1.2 SCHEIDEN VAN MENGSELS
=> scheidingstechnieken = fysisch proces om 1/+ componenten uit mengsels af te zonderen
Manueel = met de hand
Zeven = grote deeltjes blijven liggen, andere gaan erdoor
Filtreren = poriëngrootte
o Achterblijven = residu
o Er door = filtraat
Decanteren = twee of meerdere niet mengbare stoffen te scheiden, massadichtheid -> zwaar zakt naar bodem
o Manueel, vb. Wijn
o Scheitrechter, olie en water
Centrifugeren = snel ronddraaien, als het snel moet gaan
Extraheren = extractievloeistof wordt aan mengsel toegevoegd
Destilleren = kooktemperatuur
o Gecondenseerde vloeistof = destillaat
o Andere = residu
2.2 ZUIVERE STOFFEN – MOLECULEN – ATOMEN
Materie = deelbaar
Elementen verliezen individuele eigenschappen door chemische bindingen tussen moleculen
Zuivere stof = bevat 1 soort moleculen
o Samengestelde stof = verschillende elementen
o Enkelvoudige stof = dezelfde elementen
Mengsel = meerdere soorten moleculen
Atoomsoorten/ elementen
o 92 natuurlijke elementen
o Natuurlijke elementen vormen atomaire bouwstenen van samengestelde stoffen
2.3 CHEMISCH TEKENSCHRIFT
Brutoformule = # elementen van elke soort in de zuivere stof
Ruimtelijke schikking, 2 mogelijkheden
o Moleculen: afzonderlijke afbakende stofeenheden
o Roosterstructuur: geen duidelijke begrensde combinaties van elementen
o Brutoformule is dan verhoudingsformule, vb. NaCl: 1/1 (verhouding)
2.3.1 FORMULES VAN ENKELVOUDIGE STOFFEN
Opgebouwd uit afzonderlijke atomen= X = naam element
Uit moleculen = Grieks telwoord + naam element
Vb. O2, H2
2.3.2 FORMULES VAN SAMENGESTELDE STOFFEN
XnYm; vb. H2O, Ca3(PO4)2
Mengsels: hebben geen brutoformule
Coëfficiënt: 3 H2O
, 3. ATOOMBOUW
3.1 HISTORIEK
Atoommodellen
3.2 SAMENSTELLING EN SYMBOLISCHE VOORSTELLING VAN EEN ATOOM
Protonen
o Positief geladen Atoomkern: protonen + neutronen = nucleonen
Neutronen (ong. zelfde massa)
o Neutraal geladen
Elektronen
o Negatief geladen
o Massa verwaarloosbaar
Periodiek systeem
o Atoomnummer Z = aantal p+
o Massagetal A = nucleonen
o A – Z = Neutronen
Isotopen
o Element met zelfde Z, maar ander A
o P+ en e- -> zelfde
o N niet zelfde
e- = p+ = atoom
e- > p+ = anion (-)
e- < p+ = kation (+)
o Bij elementen rechtsboven + of -
o Bij + dan Z – RB = e- RB = getal rechtsboven
o Bij – dan Z + RB = e-
3.3 GEMIDDELDE RELATIEVE ATOOMMASSA
Gemiddelde absolute massa = werkelijke gem massa in kg
Internationale atoommassa-eenheid: u
o 1u = 1.66*10 ^ -27 kg
o 1u = 1 Da (dalton)
Gem relatieve atoommassa: Ar
o Ar = m atoom (gem)/ u
o Bij isotopen Ar ≈ A
Gem relatieve molecuulmassa: Mr
o Som v.d. A, vb. H2O = 1*2 + 16 = 18
Gem absolute molecuulmassa: m
o Mr * u
o Gem absolute ion massa: som A
, 3.4 ELEKTRONEN
3.4.1 EIGENSCHAPPEN
Deeltjes eigenschappen
Golfeigenschappen
o Onzekerheidsprincipe van Heisenberg = onmogelijk om gelijktijdig plaats en snelheid elektron te
kennen
o Discontinue waarden
Orbitaal = ruimtelijke voorstelling 90% kans om e- aan te treffen
Hoofdkwantumgetal: n
o Hoe groter n, hoe verder de e- van kern ligt dus ook meer elektronen
o 7 schillen, K, L, M, N, O, P
o Elke schil max 2*n², vb. E- op schil O -> 2*5² = 50 MAG NIET want max 32 per
schil
Nevenkwantum getal: l
o 0, 1, 2, 3
o Subschillen: s, p, d, f
o Max aantal elektronen: 4*l + 2
L = 0 -> s-orbitaal, bol, 1 oriëntatie
L= 1 -> p-orbitaal, halter, 3 oriëntaties
L=2 -> d-orbitaal, 2 halters, 5 oriëntaties
L=3 -> f-orbitaal, 7 oriëntaties
Magnetisch kwantumgetal m
o -I, 0, +I
S-orbitaal: 1 oriëntatie
P-orbitaal: 3 versch. oriëntaties
D-orbitaal 5 versch. oriëntaties
F-orbitaal: 7 versch. oriëntaties
Spin: up -> positief, tegenwijzerzin in | down -> negatief, met wijzers mee
s- orbitaal = 1 hokje
P = 3 hokjes
D = 5 hokjes
F= 7 hokjes
Ontstaan van doubletten/ e- paren
o Om voor te komen in 1 magnetisch niveau moeten de 2 e- en tegengestelde spin bezitten
o Spinkwantumgetal: ms
getalwaarde die oriëntatie van spin e- weergeeft (waarde: +1/2 = spin up en -1/2 spin down)
o pauli-verbod
2e- in eenzelfde orbitaal hebben altijd tegenovergestelde spin
o Naarmate groter aantal p+ in elementen
E-: sterkere aantrekkingskracht naar atoomkern
E-waarde van een e- met dezelfde kwantumgetallen dalen tov element met kleiner aantal p+
in kern
E-waarde van e- = uniek, wordt gebruikt als identificatie van een element