100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Kirchhoff's Current And Voltage Law €7,89
In winkelwagen

College aantekeningen

Kirchhoff's Current And Voltage Law

 6 keer bekeken  0 keer verkocht
  • Vak
  • Instelling

Kirchhoff's Laws are fundamental principles in electrical circuit theory that govern the behavior of electrical circuits, specifically in terms of current and voltage. They are named after Gustav Kirchhoff, a German physicist who formulated them in the mid-19th century. 1. **Kirchhoff's Current...

[Meer zien]

Voorbeeld 3 van de 16  pagina's

  • 11 juni 2024
  • 16
  • 2023/2024
  • College aantekeningen
  • Subha basak
  • Alle colleges
  • Onbekend
avatar-seller
6/11/24, 8:30 PM Kirchhoff's Current And Voltage Law




Kirchhoff’s Voltage Law:
Kirchhoff’s Voltage Law (KVL) is Kirchhoff’s second law that deals
with the conservation of energy around a closed circuit path.
Gustav Kirchhoff’s Voltage Law is the second of his fundamental laws
we can use for circuit analysis. His voltage law states that for a closed
loop series path the algebraic sum of all the voltages around any
closed loop in a circuit is equal to zero. This is because a circuit loop
is a closed conducting path so no energy is lost.
In other words the algebraic sum of ALL the potential differences
around the loop must be equal to zero as: ΣV = 0. Note here that the
term “algebraic sum” means to take into account the polarities and signs
of the sources and voltage drops around the loop.
This idea by Kirchhoff is commonly known as the Conservation of
Energy, as moving around a closed loop, or circuit, you will end up
back to where you started in the circuit and therefore back to the same
initial potential with no loss of voltage around the loop. Hence any
voltage drops around the loop must be equal to any voltage sources met
along the way.
So when applying Kirchhoff’s voltage law to a specific circuit element,
it is important that we pay special attention to the algebraic signs,
(+ and -) of the voltage drops across elements and the emf’s of sources
otherwise our calculations may be wrong.
But before we look more closely at Kirchhoff’s voltage law (KVL) lets
first understand the voltage drop across a single element such as a
resistor.


A Single Circuit Element




about:blank 1/16

,6/11/24, 8:30 PM Kirchhoff's Current And Voltage Law




For this simple example we will assume that the current, I is in the same
direction as the flow of positive charge, that is conventional current
flow.
Here the flow of current through the resistor is from point A to point B,
that is from positive terminal to a negative terminal. Thus as we are
travelling in the same direction as current flow, there will be a fall in
potential across the resistive element giving rise to a -IR voltage drop
across it.
If the flow of current was in the opposite direction from point B to
point A, then there would be a rise in potential across the resistive
element as we are moving from a - potential to a + potential giving us
a +I*R voltage drop.
Thus to apply Kirchhoff’s voltage law correctly to a circuit, we must
first understand the direction of the polarity and as we can see, the sign
of the voltage drop across the resistive element will depend on the
direction of the current flowing through it. As a general rule, you will
loose potential in the same direction of current across an element and
gain potential as you move in the direction of an emf source.
The direction of current flow around a closed circuit can be assumed to
be either clockwise or anticlockwise and either one can be chosen. If the
direction chosen is different from the actual direction of current flow,
the result will still be correct and valid but will result in the algebraic
answer having a minus sign.
To understand this idea a little more, lets look at a single circuit loop to
see if Kirchhoff’s Voltage Law holds true.




about:blank 2/16

, 6/11/24, 8:30 PM Kirchhoff's Current And Voltage Law




A Single Circuit Loop




Kirchhoff’s voltage law states that the algebraic sum of the potential
differences in any loop must be equal to zero as: ΣV = 0. Since the two
resistors, R1 and R2 are wired together in a series connection, they are
both part of the same loop so the same current must flow through each
resistor.
Thus the voltage drop across resistor, R1 = I*R1 and the voltage drop
across resistor, R2 = I*R2 giving by KVL:




We can see that applying Kirchhoff’s Voltage Law to this single closed
loop produces the formula for the equivalent or total resistance in the




about:blank 3/16

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper waltonx96mini. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,89. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 53340 samenvattingen verkocht

Opgericht in 2010, al 14 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,89
  • (0)
In winkelwagen
Toegevoegd