100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
XI_Physics_New_Chap_6_Systems_of_Particles_and_Rotational_Motion €7,56
In winkelwagen

Tentamen (uitwerkingen)

XI_Physics_New_Chap_6_Systems_of_Particles_and_Rotational_Motion

 0 keer verkocht
  • Vak
  • Instelling

XI_Physics_New_Chap_6_Systems_of_Particles_and_Rotational_Motion

Voorbeeld 2 van de 15  pagina's

  • 23 juni 2024
  • 15
  • 2023/2024
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
avatar-seller
XI Physics_New Chapter-6_System of Particles and Rotational Motion_[True or False Statement Questions]
Sl # Statements [6.1 Introduction] True/False

In the study of motion, extended bodies are considered as systems of particles, where the
1 TRUE
center of mass is a key concept.
Rigid bodies are idealized as bodies with perfectly definite shapes, and they may have pure
2 TRUE
translational motion or a combination of translation and rotation.
Rotation of a rigid body is characterized by particles moving in circles lying in planes
3 TRUE
perpendicular to the axis of rotation.
In cases of rotation about a fixed axis, the axis remains stationary, and each particle on the axis
4 TRUE
stays at rest.
The rolling motion of a cylinder down an inclined plane involves both translation and rotation,
5 TRUE
making it a combination of motion types.
In physics, the concept of a rigid body is used to simplify the analysis of motion, where a rigid
6 TRUE
body maintains its shape.
Translational motion occurs when all particles of a rigid body move with the same velocity at
7 TRUE
any instant, as in the case of a block sliding down an inclined plane.
In some cases of rotation, like an oscillating table fan, the axis of rotation is not fixed but
8 TRUE
sweeps out a cone as it moves, called precession.
In physics, the motion of a rigid body can either be pure translation or a combination of
9 TRUE
translation and rotation, depending on whether it is pivoted or fixed.




1 OF 15 RI_Best Wishes

, XI Physics_New Chapter-6_System of Particles and Rotational Motion_[True or False Statement Questions]
Sl # Statements [6.1 Center of Mass] True/False

The center of mass of a system of particles can be calculated by finding the mass-weighted
1 TRUE
mean of the individual particle positions.
2 For two particles of equal mass, the center of mass lies exactly midway between them. TRUE
The center of mass of a homogeneous thin rod coincides with its geometric center due to
3 TRUE
reflection symmetry.
The center of mass of a triangle lies at the point of concurrence of its medians, known as the
4 TRUE
centroid.
The center of mass of a uniform L-shaped lamina can be found by considering the individual
5 TRUE
squares that make up the L shape and finding their center of mass.
The center of mass of a system of particles is a point where the sum of the mass-weighted
6 TRUE
positions of individual particles equals the total mass of the system.
Center of mass coordinates can be found using X = (∑mixi) / (∑mi) and Y = (∑miyi) / (∑mi), with xi
7 TRUE
and yi representing individual particle positions.
The center of mass of a uniform L-shaped lamina with multiple squares can be calculated by
8 TRUE
finding the center of mass of each square and determining their overall center of mass.
The center of mass of a homogeneous body with regular shapes like rings, discs, spheres, and
9 TRUE
rods lies at their geometric centers due to symmetry.
Using the concept of reflection symmetry, the center of mass of a thin rod coincides with its
10 TRUE
geometric center.
If the origin of the coordinate system is chosen as the center of mass, the sum of the position
11 TRUE
vectors of individual particles becomes zero.
The center of mass of a rigid body is determined using the formula R = (∫r dm) / M, where R is
12 the center of mass position vector, r is the mass element's position vector, dm is the mass TRUE
element, and M is the total body mass.
As the number of particles in a continuous distribution becomes large, we approximate the
13 TRUE
center of mass using integrals, where the origin is chosen as the center of mass.




2 OF 15 RI_Best Wishes

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, Bancontact of creditcard en je bent klaar. Geen abonnement nodig.

Focus op de essentie

Focus op de essentie

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper DoctorHkane. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,56. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 70113 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen

Laatst bekeken door jou


€7,56
  • (0)
In winkelwagen
Toegevoegd