Part IA — Vectors and Matrices
Based on lectures by N. Peake
These notes are not endorsed by the lecturers, and I have modified them (often
significantly) after lectures. They are nowhere near accurate representations of what
was actually lectured, and in particular, all errors are almost surely mine.
Complex numbers
Review of complex numbers, including complex conjugate, inverse, modulus, argument
and Argand diagram. Informal treatment of complex logarithm, n-th roots and complex
powers. de Moivre’s theorem. [2]
Vectors
Review of elementary algebra of vectors in R3 , including scalar product. Brief discussion
of vectors in Rn and Cn ; scalar product and the Cauchy-Schwarz inequality. Concepts
of linear span, linear independence, subspaces, basis and dimension.
Suffix notation: including summation convention, δij and εijk . Vector product and
triple product: definition and geometrical interpretation. Solution of linear vector
equations. Applications of vectors to geometry, including equations of lines, planes and
spheres. [5]
Matrices
Elementary algebra of 3 × 3 matrices, including determinants. Extension to n × n
complex matrices. Trace, determinant, non-singular matrices and inverses. Matrices as
linear transformations; examples of geometrical actions including rotations, reflections,
dilations, shears; kernel and image. [4]
Simultaneous linear equations: matrix formulation; existence and uniqueness of solu-
tions, geometric interpretation; Gaussian elimination. [3]
Symmetric, anti-symmetric, orthogonal, hermitian and unitary matrices. Decomposition
of a general matrix into isotropic, symmetric trace-free and antisymmetric parts. [1]
Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors; geometric significance. [2]
Proof that eigenvalues of hermitian matrix are real, and that distinct eigenvalues give
an orthogonal basis of eigenvectors. The effect of a general change of basis (similarity
transformations). Diagonalization of general matrices: sufficient conditions; examples
of matrices that cannot be diagonalized. Canonical forms for 2 × 2 matrices. [5]
Discussion of quadratic forms, including change of basis. Classification of conics,
cartesian and polar forms. [1]
Rotation matrices and Lorentz transformations as transformation groups. [1]
0 Introduction
Vectors and matrices is the language in which a lot of mathematics is written
in. In physics, many variables such as position and momentum are expressed as
vectors. Heisenberg also formulated quantum mechanics in terms of vectors and
matrices. In statistics, one might pack all the results of all experiments into a
single vector, and work with a large vector instead of many small quantities. In
group theory, matrices are used to represent the symmetries of space (as well as
many other groups).
So what is a vector? Vectors are very general objects, and can in theory
represent very complex objects. However, in this course, our focus is on vectors
in Rn or Cn . We can think of each of these as an array of n real or complex
numbers. For example, (1, 6, 4) is a vector in R3 . These vectors are added in the
obvious way. For example, (1, 6, 4) + (3, 5, 2) = (4, 11, 6). We can also multiply
vectors by numbers, say 2(1, 6, 4) = (2, 12, 8). Often, these vectors represent
points in an n-dimensional space.
Matrices, on the other hand, represent functions between vectors, i.e. a
function that takes in a vector and outputs another vector. These, however, are
not arbitrary functions. Instead matrices represent linear functions. These are
functions that satisfy the equality f (λx + µy) = λf (x) + µf (y) for arbitrary
numbers λ, µ and vectors x, y. It is important to note that the function x 7→ x+c
for some constant vector c is not linear according to this definition, even though
it might look linear.
It turns out that for each linear function from Rn to Rm , we can represent
the function uniquely by an m × n array of numbers, which is what we call the
matrix. Expressing a linear function as a matrix allows us to conveniently study
many of its properties, which is why we usually talk about matrices instead of
the function itself.
4
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper harshwardhansandeeppawar. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €4,45. Je zit daarna nergens aan vast.