100% tevredenheidsgarantie Direct beschikbaar na betaling Zowel online als in PDF Je zit nergens aan vast
logo-home
Summary Hoofstuk 6 en 12 €7,16
In winkelwagen

Samenvatting

Summary Hoofstuk 6 en 12

 0 keer verkocht

Deze samenvatting bevat hf 6 en 12. De andere samenvatting bevat de andere hoofdstukken. Het leren van deze samenvatting biedt inzichten in de materie.

Voorbeeld 3 van de 19  pagina's

  • 10 oktober 2024
  • 19
  • 2023/2024
  • Samenvatting
Alle documenten voor dit vak (2)
avatar-seller
MarieVerhelst60
6.2. Shrinkage methods
1) ridge regression
2) lasso regression

6.2.1. Ridge regression
Recall that least squares regression minimizes RSS to estimate coefficients. The coefficients are unbiased, meaning that
least squares doesn't take variable significance into consideration when determining the coefficient values.




-> first term= RSS
-> second term= shrinkage penalty: term that shrinks the coefficients towards 0
-> λ =tuning parameter that controls the relative impact of the penalty term on the regression model


λ is large: coefficients must be small to make the second term small enough
-> coefficient estimates that come from ridge regression= biased: because variable significance
-> different values of λ will produce different sets of coefficient estimates
-> choose proper λ value through cross-validation

 SCALING OF THE VARIABLES IS IMPORTANT

Ridge regression> least squares regression
Advantage ridge regression: bias-variance tradeoff
λ =0: high variance, no bias -> penalty term has no effect
increases λ -> flexibility of ridge regression decreases-> variance decreases-> bias increases
=> variance of the ridge regression predictions as a function of λ
if p is almost as large as n: use ridge regression (bc least squares regression has high variance)

Ridge regression > subset selection
=> computational advantages: ridge only fits a single model

Disadvantages:
-> will include al p predictors in the final model
-> penalty will shrink all of the coefficients towards 0 but will not set any of them exactly 0

(unless λ =0)
-> problem for model interpretation when p is large




1

,6.2.2. Lasso regression


-> shrink coefficients estimates towards 0
-> different penalty: forces some of the coefficients estimates to be exactly zero when the tuning
parameter λ is large enough

=> lasso regression performs variable selection (easier to interpret the final model)

• λ =0: least squares fit
• λ is super large: null model (coefficients estimates=0)

ridge regression vs lasso regression
lasso can produce a model involving any number of variables
 ridge will always include all of the variables

ridge regression > lasso regression
=> response is a function of a large number of predictors

ridge regression < lasso regression
=> response is a function of only a few of the predictors




- all the points on a given ellipse share a common value of the RSS
- the further away from the least square coefficients estimates, the more RSS increases
- the lasso and ridge regression coefficients estimates are given by the first point at which an
ellipse contacts the constraint region (=blue region) = de schattingen van de lasso- en rigde
regressiecoëfficiënten worden gegeven door het eerste punt waarop een ellips het
beperkingsgebied raakt (=blauw gebied)
- lassobeperking heeft hoeken
=> ellipsen snijden het beperkingsgebied vaak op een as=> gelijk aan nul
- here: snijpunt bij B1=0 : resulting model will only include B2
- ridge: circular constraint with no sharp points (cirkelvormige beperking)
=> intersectie zal over het algemeen niet voorkomen op een acis=> niet -nul


2

, p=3
ridge regression=sphere
lasso= polyhedrion

p>3
ridge= hypersphere
lasso= polytope

advantage lasso:
-> more interpretable models that involve only a subset of the predictors
-> bc off variable selection

TYPES OF SHRINKAGE

o ridge: shrinks each least squares coefficients estimate by the same proportion
o lasso: shrinks each least squares coefficients estimate towards zero by a constant amount
-> coefficients that are less than this amount in absolute value are shrunken entirely to 0
= soft thresholding
=> feature selection

BAYESIAN INTERPRETATION

▪ Gaussian distribution (with mean zero and standard deciation a function of λ)
=> posterior mode for B (=most likely value for B given the data) = ridge regression solution
=posterior mean
▪ Double- exponential (Laplace, with mean zero and scale parameter a function of λ)
=> posterior mode for B= lasso solution (not a posterior mean)

SELECTING THE TUNING PARAMETER Λ

1. create a grid of different λ values
2. determine the cross-validation test error for each value
3. choose the value that resulted in the lowest error




3

Voordelen van het kopen van samenvattingen bij Stuvia op een rij:

√  	Verzekerd van kwaliteit door reviews

√ Verzekerd van kwaliteit door reviews

Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!

Snel en makkelijk kopen

Snel en makkelijk kopen

Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.

Focus op de essentie

Focus op de essentie

Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper MarieVerhelst60. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor €7,16. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 73527 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Start met verkopen
€7,16
  • (0)
In winkelwagen
Toegevoegd