This summary encompasses all chapters of the course Genome Technology and Applications, taught by Professors Van Camp and Van Hul. It is based on PowerPoint slides and lecture notes, providing a thorough understanding of the key concepts and applications in genome technology.
Score of 16.
H1 : CELL BASED DNA CLONING
1.1 PRINCIPLES OF DNA CLONING
1.1.1 CELL BASED DNA CLONING
4 steps of cell based DNA cloning :
1) In vitro construction of a recombinant DNA molecule
2) Transformation in a host
3) Selective propagation of clones
4) Isolation of recombinant DNA clones
STEP 1 : IN VITRO CONSTRUCTION OF A RECOMBINANT DNA MOLECULE
Recombinant DNA molecule = combining different DNA molecules
→ requires cutting and pasting of DNA
● Cutting = restriction endonucleases
● Pasting = DNA ligase
Requires a replicon
● A piece of DNA that makes independent DNA replication possible
● Region of an organism’s genome that independently replicates from a single origin of replication (ORI)
● Replicon is specific for a host
Plasmid
● Mostly we clone in bacteria → replicon = plasmid
● Plasmid is a small circular DNA molecule found in bacteria
● They are physically separated from chromosomal DNA and replicate independently
Vector
● Usually a construct called “vector” is used, containing many features used in the cloning process
● Vector = plasmid that has been engineered → special features have been added
● It’s used as a vehicle to carry a particular DNA segment into a host cell
Schema
1) Bacterial cells with vector = plasmid
● Purify plasmid
● Cut it with restriction enzyme
2) Human cells
● Purify DNA
● Cut it with restriction enzyme
3) Ligate bacterial DNA with human DNA = recombinant DNA
,STEP 2 : TRANSFORMATION
Transformation = recombinant DNA molecule is introduced in a host cell
● Usually introduction in bacterial cells or yeast
○ Easy to grow
○ Fast reproduction
● For expression studies, cloning is often done in eukaryotic cells
○ Mammalian cells, insect cells → see later in this chapter
● So take construct → put it in host cells = transformation
STEP 3 : SELECTIVE PROPAGATION OF CLONES
● The transformed cells are plated on agar → each individual cell forms a colony
● 1 colony can be grown in liquid medium to obtain more cells
● Each colony consists of clones
○ All cells are identical because they have the same ancestor cell
STEP 4 : ISOLATION OF RECOMBINANT DNA CLONES
Cell lysis and purification
● 1 colony is picked up from the agar and will be grown in liquid medium → grow it overnight → liquid
medium with a lot of bacteria → lyse them → purify recombinant DNA
→ now look back for more details
,1.1.2 RESTRICTION ENDONUCLEASES
→ First step : making recombinant DNA molecule
Restriction endonucleases (RE) = enzymes used for cutting to make recombinant DNA
● Nomenclature: 1 letter genus, 2 letters species, followed by number
○ E.g. HaeIII: Hemophilus aegypticus
○ The RE is named after a bacteria because we get these enzymes from bacteria
○
Function of RE in bacteria = defense mechanism against bacteriophages
● Bacteria can get infected by viruses = bacteriophages
● DNA from bacteriophage enters the bacterium and is cleaved
● Type II RE will cut a specific recognition sequence
● RE recognises a specific DNA sequence BUT we don’t want the bacterial DNA to be cut
○ There’s a matching sequence specific DNA methylase
○ It methylases the recognition sequence in the bacterial DNA → bacterial DNA cannot be cut
Recognition sequence
● Usually 4-8 bp
● Usually palindrome
Cleavage
● On the symmetry axis: blunt ends
● Not on the symmetry axis : overhangs = sticky ends = cohesive termini
● Sticky ends can base pair and form unstable double helices by DNA ligase
○ 5’ overhang
○ 3’ overhang
, Examples of restriction enzymes that are used in the lab
MBO1 and BAMH1 create the same overhangs
● 5 prime overhang = GATC
● These overhangs are compatible = They can be ligated
Examples of RE and the results they give on total human DNA
➔ Take the whole human genome and cut it with an RE = you get fragments of a certain length (bp)
➔ If you have a short recognition sequence you get short fragments
1) HaeIII gives longer fragments than AluI, even though the recognition sequence is equal in length (4 bp)
● The human genome has less GC than AT
● There will be less sites for HAEIII than for AluI
● Therefore the fragments of AluI will be shorter than HAEIII fragments
2) TaqI gives even longer fragments
● It has the same GC content than AluI but gives longer fragments
● Has to do with CpG → important site for DNA methylation
● CpG are only ⅕ of the frequence of a dinucleotide = rare in the human genome
Isoschizomers: different restriction enzymes that have the same recognition sequence
Some RE have compatible cohesive termini → E.g. BamHI: GGATCC en MboI: GATC
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper biomedicalscientist2022. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €16,69. Je zit daarna nergens aan vast.