- Friedrich Miescher =
Onderzoeken witte BC ---> isoleren v substantie met andere fysiologische eig = nucleïne =
− geen S - resistent voor proteolyse
− veel F
- Phoebus Levene =
DNA = nucleotide bouwstenen = suiker + P + base ---> maakte tetranucleotide = structuur die
basen verbindt ---> kan onmogelijk genetische info bevatten
- Frederick Griffith =
Onderzoek pneumopokken:
− R = rough = niet virulent
− S = smooth = bevat polysacharidemantel = bescherming tg immuunsysteem
organisme ---> virulent
Experiment:
− Muis 1 = R ---> levend
− Muis 2 = S ---> dood
− Muis 3 = dode S + R ---> dood ---> transformingfactor bestaat
- Avery + McCarthy + MacLeod =
S bacterie doden dr verhitting ---> behandelen met 3 soorten enzymen:
− Proteasen
ontstaan van levende S-cellen
− Ribonucleasen
− desoxyribonucleasen ---> geen levende S cellen ontstaan ---> bewijs dat dit
transformingfactor is
- Alfred Hershey + Martha Chase =
Bacteriofaag experiment ---> fagen = virus met enkel eiwit + DNA = injecteren substantie in
bacterie die bacterie stimuleert nieuwe faagpartikels aan te maken = genetisch materiaal
---> gebruik van radio-isotopen =
− Fagen groeien in die substantie = 35S bevatten ---> enkel in eiwitten
− Fagen groeien in 32P ---> opnemen in DNA
---> fagen in blender + centrifuge = fagen in oplossing (= lichtste) en bacteriën naar onder
(=zwaarst)
===> 32P = volledig in bacterie + 35S enkel in fagen ---> DNA = transformingfactor
Model voor structuur v DNA =
- Chargaff = regel v Chargaff
− purines en pyrimidines ratio = 1
− A,T,C,G ≠ in gelijke hoeveelheden aantreffen
- zelfde hoeveelheid basen bij individuen van zelfde
soort 1
, - Watson + Crick
= ontdekken structuur van dubbele helix v DNA door samenleggen v ≠ theorieën =
− diffractie resultaten dr Franklin = tonen structuur v helix
− regel van Chargaff
− structuur van helix dr Linus Pauling
Centraal dogma =
Beschrijving van de infostroom van DNA naar eiwit = DNA ---> RNA ---> eiwit + eens info in eiwit = kan
die er niet meer uit
Hoofdstuk 2
Structuur van DNA ---> Nucleotide =
- pentose ring = deoxyribose
- P-groep ---> zorgt voor zuur karakter
- stikstofhoudende base ---> A/G/C/T
- nummering met accenten ---> 5’ = fosfodiesterbinding
- purines = 2 ringen = A en G = 9-N aan pentose
- pyrimidines = 1 ring = C en T = 1-N aan pentose
nomenclatuur =
ontstaan DNA molecule =
1. N-houdende base koppelen aan 1’- C pentose = vormen nucleoside
2. P-groep covalent koppelen aan 5’-C ribose = vormen nucleotide
3. nucleotiden condenseren = OH op 3’-C v suiker 1e reageren met P-groep op 5’-C van suiker 2e
---> vorming v esterbinding = H2O elimineren + 2P vrijstellen onder vorm v pyrofosfaat
---> = fosfodiesterbinding
DNA-sequentie noteren = 5’ uiteinde links + 3’ uiteinde rechts ---> na vorming binding = nog
steeds 1 O v P-groep negatief geladen
DNA = beschreven in aantal basenparen (bp) = maat voor lengte v dubbelstrengig DNA = in
kilobasenparen (kbp) of megabasenparen (mbp)
---> kortere structuur = oligonucleotiden
Secundaire structuur DNA =
Waterstofbruggen =
Zwakke kracht ---> ts N-houdende basen v 2 complementaire DNA strengen = H delen dr
elektronegatieve atomen bv N en O ---> ≠ sterk maar door hoeveelheid = zorgen voor
structuur 2
---> = tussen 2 complementaire basen = Watson-Crick basenparing
,Van der Waals interacties =
e- constant in beweging = atomen bekomen kleine asymmetrie in lading = werkt
stabiliserend ---> fluctueert doorheen tijd
---> kan door apolair karakter v basen ---> kommen als vlakke structuren op elkaar + stoten
H2O moleculen af = base stacking ---> H2O uit binnenste helix verdrijven
Grote + kleine groeves =
Ontstaan omdat 2 glycosidische bindingen die basenpaar verbinden niet perfect tegenover elkaar
liggen ---> suiker-fosfaat-ruggen liggen niet perfect tegenover elkaar
---> grote groeve = belangrijke rol in sequentiespecifieke interacties ts DNA + eiwitten ---> eiwitten
lezen info uit grote groeve af = solventietoegankelijk = H-bruggen aangaan ts N en O atomen v basen
die grote groeves aflijnen + H-brug aangaan met zijketens AZ v DNA-bindende base
Kenmerken secundaire DNA-structuur =
- dubbelstrengige helix die samengehouden wordt door H-bruggen
- Helix = rechtshandig
- Helix = anti-parallel
- zowel DNA buitenranden als basen = betrokken worden in H-brug vorming ---> zo interacties
aangaan met andere moleculen ---> belangrijk voor replicatie + transscriptie
---> normale helix = B-DNA + alternatieve helix = A-DNA = meer compact + niet voorkomen in
fysiologische toestanden
Denaturatie en renaturatie
- denaturatie = H-bruggen verbreken + fosfodiesterbindingen blijven intact ---> kan gemeten
worden door UV licht v 260 nm
---> enkelstrengig = veel rapper opnemen
---> dubbelstrengig = opname duurt langer
= hyperchromiciteit
---> smelttemperatuur = Tm = temperatuur waarbij de helft van de baseparen in
dubbelstrengig DNA gedenatureerd is ---> sterk bepaald door G-C gehalte
---> denaturatie kan ook door zout verlagen + pH verhogen
- renaturatie = annealing = complementaire basestrengen vinden elkaar terug ---> mogelijk
om 2 complementaire baseparen v ≠ oorsprong te laten baseparen = hybridisatie
3
, renaturatie snelheid =
- DNA concentratie
- Ionen concentratie
- temperatuur
- complexiteit hybridiserende DNAs
---> tonen via CoT-curve ---> maken =
1. genomisch DNA in handelbare delen
verdelen
2. denatureren door verhitting
3. reassociatie van ssDNA-strengen in tijd
spectrofotometrisch volgen
Y-as = gedenatureerde fractie
X-as = product van CoT met
- C = concentratie ssDNA gedenatureerd
- Co = initiële concentratie ssDNA
- t = tijd waarop C wordt bepaald
---> voor humaan DNA = verschillende buigingen = verschillende types DNA =
1. hoog repetitief ---> lage CoT waarde want komen meer voor = makkelijker complement
vinden
2. gemiddeld repetitief
3. uniek DNA ---> komt minst voor = hoge CoT = moeilijker complement vinden --->
regulatorisch CIS elementen ingebed (zie verder)
Tertiaire structuur =
Supercoiling =
Lange dubbelstrengige helices maken extra windingen in ruimte vormen door torsionele stress --->
bijna alle DNA in organismen komt zo voor ---> linkshandige wendingen = negatieve supercoiling --->
stabiliseren door zwakke interacties ---> belangrijk in replicatie + transscriptie + recombinatie
Hoofdstuk 3
Genoom = geheel aan genetische info v een organisme ---> mens = bevat diploïd equivalent van
volledige hormoon
---> uitzondering: geslachtcellen = haploïd + rode bc = geen kern + witte bc = recombinaties in
immuunrepertoire DNA
---> elk celtype bevat volledige genoom maar andere delen komen tot expressie
Biologische wereld = 3 grote rijken =
- Archae
- Eubacteria verdeling = dr vgl sequenties v ribosomale RNAs
- Eukaryota 4
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper geneeskundesamenvattingen53. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €6,99. Je zit daarna nergens aan vast.