What to examine when assessing the bivariate relationship between a Factor predictor variable and a binary target variable? - Answer A table to asses (with rows as factor levels) the mean probabilities, counts of observations of each factor, and counts of each observation of each binary target.
...
SOA PA Exam Questions And Already
Passed Answers.
What to examine when assessing the bivariate relationship between a Factor predictor variable and a
binary target variable? - Answer A table to asses (with rows as factor levels) the mean probabilities,
counts of observations of each factor, and counts of each observation of each binary target.
What to examine when assessing the bivariate relationship between a Continuous predictor variable and
a binary target variable? - Answer - A graph with separate histograms for a continuous variable, one for
those with target binary = 0 and one for those with binary = 1;
- Box plots summarized based on binary target;
- Tables summarizing the mean, median, and count of the predictor based on each binary target
What to examine when assessing the bivariate relationship between a Factor predictor variable and a
Continuous target variable? - Answer Box Plots and tables summarizing the mean, median, and count
of the target based on each factor
What to examine when assessing the bivariate relationship between a Continuous predictor variable and
a Continuous target variable? - Answer Scatter plots. Correlation between each variable [cor() in R].
What to examine when assessing (univariate analysis) a Continuous predictor variable? - Answer Assess
the histogram of the distribution. Check the skewness (does it need to have a log transformation).
- Check for extreme (unreasonable) outliers
- Check for obvious errors in data
- Check for obvious duplicates
What to examine when assessing (univariate analysis) a Factor predictor variable? - Answer Assess Bar
chart. (Count of observations per factor level)
What data questions should be considered while reading the project statement? - Answer Is the
project statement more interested in interpretable models or more accurate complicated models?
What type of variable is the target variable?
,What type of variable are the predictor variables?
Are there any outliers that need to be removed?
Are there any Factor variables that could be combined?
R-Code; remove a variable from the dataframe. - Answer df$variable <- NULL
R-Code; Create training and testing sets. - Answer set.seed(n)
train_ind <- createDataPartition(df$Target, p = 0.7, list = FALSE)
data.train <- df[train_ind, ]
data.test <- df[-train_ind, ]
What type of data to use a log transformation? - Answer Right Skewed (common with variables of
Time, Distance, or Money which have a lower boundary of 0)
What type of data to use a Logit transformation? - Answer Binary (boolean) Target variable
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper TestSolver9. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €10,06. Je zit daarna nergens aan vast.