100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Markov Decision Processes Verified Solutions

Beoordeling
-
Verkocht
-
Pagina's
7
Cijfer
A+
Geüpload op
30-10-2024
Geschreven in
2024/2025

Markov Decision Processes Verified Solutions Markov decision processes ️️MDP - formally describe an environment for reinforcement learning - environment is fully observable - current state completely characterizes the process - Almost all RL problems can be formalised as MDP - optimal control primarily deals with continuous MDPs - Partially observable problems can be converted into MDPs - Bandits are MDPs with one state Markov Property ️️- future is independent of the past given the present -the state captures all relevant information from the history - once the state is known the history can be thrown away - the state is a sufficient statistic of the future State transition Matrix ️️- markov state s and successor state s', the state transition probability - state transition matrix P defines transition probabilities from all states s to all successor states s' Markov Process ️️- markov process is a memoryless random process i.e, a sequence of random states S1, S2... with the markov property -Markov process (or Markov Chain) is a tuple <S,P> - S is a (finite) set of states - P is a state transition probability matrix Markov reward process ️️- A markov reward process is a Markov Chain with values - Markov reward process is a tuple <S,P,R,Y> - S is a finite set of a states - P is a state transition probability matrix - R is a reward function -Y is a discount factor Return ️️- Return Gt is the total discounted reward from time-step t - the discount Y is the present value of future rewards - value of receiving reward R after k+1 time-steps is Y^k R - values immediate reward above delayed reward - y lose to 0 leads to "myopic" evaluation - y close to 1 leads to "far sighted" evaluation Discount ️️- mathematically convenient to discount rewards - Avoids infinite returns in cyclic Markov Processes - Uncertainty about the future may not be fully represented - if reward is financial, immediate rewards may earn more interest than delayed rewards - animal/human behavior shows preference for immediate reward - sometimes possible to use undiscounted Markov reward processes if all sequences terminate Value Function ️️-Value function v(s) gives the long-term value of state s - state value function v(s) of an MRP is the expected return starting from state s Bellman Equation for MRPs ️️the value function can be decomposed into two parts: - immediate reward Rt+1 - discounted value of successor state Yv(St+1)

Meer zien Lees minder
Instelling
M-arko-v Decision Processes Verified Solution
Vak
M-arko-v Decision Processes Verified Solution









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
M-arko-v Decision Processes Verified Solution
Vak
M-arko-v Decision Processes Verified Solution

Documentinformatie

Geüpload op
30 oktober 2024
Aantal pagina's
7
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Markov Decision Processes Verified Solutions

Markov decision processes ✔️✔️MDP - formally describe an environment for reinforcement learning

- environment is fully observable

- current state completely characterizes the process

- Almost all RL problems can be formalised as MDP

- optimal control primarily deals with continuous MDPs

- Partially observable problems can be converted into MDPs

- Bandits are MDPs with one state



Markov Property ✔️✔️- future is independent of the past given the present

-the state captures all relevant information from the history

- once the state is known the history can be thrown away

- the state is a sufficient statistic of the future



State transition Matrix ✔️✔️- markov state s and successor state s', the state transition probability

- state transition matrix P defines transition probabilities from all states s to all successor states s'



Markov Process ✔️✔️- markov process is a memoryless random process i.e, a sequence of random
states S1, S2... with the markov property

-Markov process (or Markov Chain) is a tuple <S,P>

- S is a (finite) set of states

- P is a state transition probability matrix



Markov reward process ✔️✔️- A markov reward process is a Markov Chain with values

- Markov reward process is a tuple <S,P,R,Y>

- S is a finite set of a states

- P is a state transition probability matrix

, - R is a reward function

-Y is a discount factor



Return ✔️✔️- Return Gt is the total discounted reward from time-step t

- the discount Y is the present value of future rewards

- value of receiving reward R after k+1 time-steps is Y^k R

- values immediate reward above delayed reward

- y lose to 0 leads to "myopic" evaluation

- y close to 1 leads to "far sighted" evaluation



Discount ✔️✔️- mathematically convenient to discount rewards

- Avoids infinite returns in cyclic Markov Processes

- Uncertainty about the future may not be fully represented

- if reward is financial, immediate rewards may earn more interest than delayed rewards

- animal/human behavior shows preference for immediate reward

- sometimes possible to use undiscounted Markov reward processes if all sequences terminate



Value Function ✔️✔️-Value function v(s) gives the long-term value of state s

- state value function v(s) of an MRP is the expected return starting from state s



Bellman Equation for MRPs ✔️✔️the value function can be decomposed into two parts:

- immediate reward Rt+1

- discounted value of successor state Yv(St+1)



Bellman Equation in Matrix Form ✔️✔️- Bellman equation can be expressed concisely using matrices,

v=R+yPv

v is a column vector with on entry per state
€8,31
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
CertifiedGrades Chamberlain College Of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
141
Lid sinds
2 jaar
Aantal volgers
61
Documenten
8748
Laatst verkocht
1 maand geleden
High Scores

Hi there! Welcome to my online tutoring store, your ultimate destination for A+ rated educational resources! My meticulously curated collection of documents is designed to support your learning journey. Each resource has been carefully revised and verified to ensure top-notch quality, empowering you to excel academically. Feel free to reach out to consult with me on any subject matter—I'm here to help you thrive!

3,9

38 beoordelingen

5
21
4
6
3
2
2
3
1
6

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen