samenvatting wetenschappelijke vorming 2 partim medische statistiek inclusief het gebruik van R. Alles wat je nodig hebt voor het open boek examen van prof S. Abrams.
MEDISCHE STATISTIEK (BA2)
INHOUDSOPGAVE
overzicht .................................................................................................................................................. 3
Welk model heb ik nodig ..................................................................................................................................... 3
Model op schrijven .............................................................................................................................................. 3
Linaire regressie ....................................................................................................................................... 4
Wat is linaire regressie? ....................................................................................................................................... 4
internet ....................................................................................................................................................................................... 4
Wanneer gebruiken we lineaire regressie .................................................................................................................................. 4
Verschillende regressiemodellen ................................................................................................................................................ 4
Enkelvoudige lineaire regressie............................................................................................................................ 5
Inleidend voorbeeld (aan de hand hier van verder uitgelegd).................................................................................................... 5
Enkelvoudig lineair regressiemodel ............................................................................................................................................ 5
We kunnen ongepaarde t test schrijven als lineaire regressie ................................................................................................... 6
Kleinste kwadraten kriterium...................................................................................................................................................... 7
Verklarende statistiek voor a en b (Reg SS, Res SS, en total SS) ................................................................................................. 9
F-test voor enkelvoudiug lineaire regressie ................................................................................................................................ 9
t-test voor enkelvoudige lineaire regressie............................................................................................................................... 11
Betrouwbaarheidsintervallen ............................................................................................................................ 12
Betrouwbaarheidsinterval voor regressieparamters a en b..................................................................................................... 12
Predictieinterval voor y horende bij een geven x-waarde ........................................................................................................ 12
Predictie- vs betrouwbaarheidsinterval voor E(y) hoerende bij een geven x waarde .............................................................. 14
Correlatie coëfficient ......................................................................................................................................... 15
Wat is de correlatie coëfficient (r) ........................................................................................................................................... 15
Verband tussen b en r ............................................................................................................................................................... 15
Meervoudige regressie ...................................................................................................................................... 16
Wat is meervoudige lineaire regressie ...................................................................................................................................... 16
Voorbeeld hypertensie (aan de hand hiervan verder uitgelegd) .............................................................................................. 16
regressieparrameters (welke, hoe vergelijken, ..)..................................................................................................................... 17
Meervoudig lineair regressiemodel .......................................................................................................................................... 18
Globale F-test: toetsen voor de hele groep regressoren .......................................................................................................... 19
partiele t-test: toetsen voor 1 regressor ................................................................................................................................... 20
Patiele F-test: toetsen voor 1 regressor .................................................................................................................................... 21
Intercatie-effecten .................................................................................................................................................................... 24
, Interpretatie van de rico ........................................................................................................................................................... 28
Betrouwbaarheidsintervallen ................................................................................................................................................... 29
Likelihood ratio testen: categroische variabelen ...................................................................................................................... 30
Meervoudige logistische regressie ............................................................................................................................................ 30
Poisson regressie ............................................................................................................................................... 32
Poisson verdeling ...................................................................................................................................................................... 32
Voorbeeld SENIC data ............................................................................................................................................................... 32
Poisson regressie....................................................................................................................................................................... 33
Interpretatie van de resultaten ................................................................................................................................................. 34
Betrouwbaarheidsintervallen (idem) ........................................................................................................................................ 35
Likelihood ratio test: categroische variabelen .......................................................................................................................... 35
Meervoudige poisson regressie ................................................................................................................................................ 35
AIC (akaike’s information criteria.............................................................................................................................................. 37
Cox regressie .......................................................................................................................................... 38
Wat is cox regressie ........................................................................................................................................... 38
Wanneer gebruiken?................................................................................................................................................................. 38
Kenmerken survival anlyse........................................................................................................................................................ 38
Voorbeeld: duur van remmisie in klinische studie voor accute leukemie ................................................................................ 38
Wat is een event time stochastische veranderlijke?................................................................................................................. 39
Types censurering ..................................................................................................................................................................... 39
Niet parametrische schating van S(t*)................................................................................................................ 41
In geval zonder censurering ...................................................................................................................................................... 41
In geval met rechtse censurering (Kaplan-Meier schatter) ....................................................................................................... 41
Cox proportinoal hazard model ......................................................................................................................... 42
Model: ....................................................................................................................................................................................... 42
Voor voorbeeld leukemie herval ............................................................................................................................................... 43
2
,OVERZICHT
WELK MODEL HEB IK NODIG
X (covartiaat) Y (uitkomstvariabele) Test of model
Categorisch Continu t-test
(bv geneesmiddel wel - One-sample t-test: als we steekproef doen bij 1 groep en
of niet gekregen, test die vgl met vaste waarde
xel of niet gedaan, …) - Gepaarde t-test: als we steekproef doen met 2 groepen
van gepaarde gegevens bv mensen voor programma en
die zelfde mensen na programma
- Ongepaarde t-test: als we steekproef doen bij 2 groepen
ongepaard bv groep met programma en andere groiep
zonder
- One way-anova: als we steekproef doen bij 3 of meer
groepen
Dichitoom = binair z-test
- One sample z-test: als we steekproef doen bij 1 groep en
die vgl met vaste waarde
- Two sample z-test: als we de steekproef doen bij 2
groepen en die vergelijken
Numeriek: Continu Lineaire regressie
Continu of discreet - Enkelvoudige lineaire regressie: indien maar 1 covariaat
- Meervoudige linaire regressie: indien meerder
covariaten
Binair Veralgemeende lineaire regressie: logistische regressie
Discreet Veralgemeende lineaire regressie: piosson regressie
Continu Cox regeressie
(overleidingstijd)
MODEL OP SCHRIJVEN
Linaire regressie
1) Y½X ~ N(µ,s2) à y volgt een normale verdeling met gemiddelde µ (hangt af van x) en variantie s2
2) h(x)= ß0+ß1x à systematische component: covariaten
3) µ(x) = ß0+ß1x à de linkfunctie is de functie die ales afbeeld op zichzelf (= identiteitslink)
Logiostische regressie
1) Y½p ~ B(p(x)) à y volgt een binomiale verdeling gegeven covariaat x met gemiddelde p(x)
2) h(x)= ß0+ß1x à systematische component
p
3) Logit(p(x))= ln ! " = ß0+ß1x à logit functie om 1) en 2) aan elkaar te linken
!" p
à we kunnen het model ook herschrijven in functie van p(x) met de expit maar is dus exact hetzelfde model
Poisson regressie
1) Y½ x ~ Pois(λ (x)) à y volgt een poisson verdeling gegeven covariaat x met gemiddelde λ(x)
2) h(x)= ß0+ß1x à systematische component
3) Log(λ(x))= ß0+ß1x à log functie om 1) en 2) aan elkaar te linken
3
, LINAIRE REGRESSIE
WAT IS LINAIRE REGRESSIE?
INTERNET
Lineaire regressie is een statistische techniek die wordt gebruikt om de relatie tussen twee variabelen te modelleren,
waarbij wordt aangenomen dat deze relatie lineair is.
à Het doel van lineaire regressie is om een lineaire relatie te vinden tussen een afhankelijke variabele (ook wel
responsvariabele of uitkomstvariabele genoemd) en één of meerdere onafhankelijke variabelen (ook wel
voorspellende of verklarende variabelen genoemd).
De meest voorkomende vorm van lineaire regressie is eenvoudige lineaire regressie, waarbij slechts één
onafhankelijke variabele wordt gebruikt om de relatie met de afhankelijke variabele te modelleren. De wiskundige
uitdrukking voor een eenvoudige lineaire regressie kan worden geschreven als:
y=a+βx+εi
• y is de afhankelijke variabele.
• x is de onafhankelijke variabele.
• a is de intercept, het punt waarop de regressielijn de y-as snijdt als xx gelijk is aan nul.
• β is de helling van de regressielijn, wat aangeeft hoeveel yy verandert voor elke verandering van één
eenheid in xx.
• εi vertegenwoordigt de foutterm, de onverklaarde variantie die niet door de regressie wordt gemodelleerd.
Het doel van lineaire regressie is om de beste schattingen te vinden voor de parameters a en β die de relatie tussen
xx en yy het best beschrijven, door de foutterm ε te minimaliseren. Deze schattingen worden meestal berekend met
behulp van methoden zoals de methode van de kleinste kwadraten
WANNEER GEBRUIKEN WE LINEAIRE REGRESSIE
Y= uitkomstvariabele
X= covariaat
Bv wat is het verschil in bloeddruk tussen mannen en vrouwen?
à Bloeddruk is de uitkomstvariable en geslacht het covariaat
Bij alle statistische tests die we hier voor hebben gezien was x steeds categorisch (geneesmiddel wel gekregen of
niet gekregen, training wel gedaan of niet gedaan,…)
à maar als x nummeriek is (continu of discreet) dan hebebn we regressiemoddelen nodig
VERSCHILLENDE REGRESSIEMODELLEN
X (covariaat) Y (uitkomstvariabele) Regressie-analyse
Numeriek: Continu Lineaire regressie
continu of Binair Veralgemeende lineaire regressie: logistische regressie
categorisch Discreet Veralgemeende lineaire regressie: piosson regressie
Continu (overleidingstijd) Cox regeressie
4
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ranicallaerts. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €15,39. Je zit daarna nergens aan vast.