Radiographic Imaging and Exposure 6th Edition Test Bank by Terri L. Fauber
3 keer bekeken 0 keer verkocht
Vak
Radiographic Imaging and Exposure
Instelling
Radiographic Imaging And Exposure
Boek
Radiographic Imaging and Exposure - E-Book
The document is not the original book; it's a handy collection of pre-written exam questions and answers that helps
educators gauge students' understanding of the course material.
It’s a great resource for creating quizzes and exams, saving teachers time and ensuring
students are assessed f...
Test Bank For Radiographic Imaging and Exposure 6th Edition by Terri L. Fauber ||All Chapters
Test Bank -Radiographic Imaging and Exposure 6th Edition by Terri L. Fauber (Chapter 1-10) latest edition ||Complete A+ Guide
complete test bank radiographic imaging and exposure 5th edition fauber questions & Answers 202
Alles voor dit studieboek (23)
Geschreven voor
Radiographic Imaging and Exposure
Radiographic Imaging and Exposure
Verkoper
Volgen
QuizNursing
Ontvangen beoordelingen
Voorbeeld van de inhoud
Radiographic Imaging and Exposure 6th Edition Test Bank
Chapter 01: Radiation and Its Discovery
Fauber: Radiographic Imaging and Exposure, 6th Edition
MULTIPLE CHOICE
1. When were x-rays discovered?
a.
b. November 8, 1895
c. January 23, 1896
d. August 15, 1902
ANS: B
X-rays were discovered by Wilhelm Conrad Roentgen on November 8, 1895.
2. What type of tube was Roentgen working with in his lab when x-rays were discovered?
a. Crookes tube
b. Fluorescent tube
c. High-vacuum tube
d. Wurzburg tube
ANS: A
Roentgen was working with a low-vacuum tube known as a Crookes tube.
3. Which of the following terms could be defined as the instantaneous production of light only
during an interaction between a type of energy and some element or compound?
a. Phosphorescence
b. Afterglow
c. Glowing
d. Fluorescence
ANS: D
Fluorescence is the instantaneous emission of light from a material due to the interaction with
some type of energy.
4. Barium platinocyanide was the:
a. type of dark paper Roentgen used to darken his laboratory.
b. material Roentgen used to produce the first radiograph of his wife’s hand.
c. metal used to produce the low-vacuum tube.
, Radiographic Imaging and Exposure 6th Edition Test Bank
d. fluorescent material that glowed when the tube was energized.
ANS: D
A piece of paper coated with barium platinocyanide glowed each time Roentgen energized his
tube.
5. The first radiograph produced by Roentgen, of his wife’s hand, required an exposure time of:
a. 15 s.
b. 150 s.
c. 15 min.
d. 150 min.
ANS: C
It took a 15-min exposure time to produce the first radiograph.
6. The letter x in x-ray is the symbol for:
a. electricity.
b. the unknown.
c. penetrating.
d. discovery.
ANS: B
The letter x represents the mathematical symbol of the unknown.
7. The first Nobel Prize for physics was received in 1901 by:
a. Marie Curie.
b. William Crookes.
c. Wilhelm Roentgen.
d. Albert Einstein.
ANS: C
Wilhelm Roentgen received the first Nobel Prize for physics in 1901.
8. X-rays were at one time called:
a. Becquerel rays.
b. Roentgen rays.
c. Z-rays.
d. gamma rays.
ANS: B
X-rays were at one time called Roentgen rays.
9. Erythema, an early sign of biologic damage due to x-ray exposure, is:
a. reddening of the skin.
b. a malignant tumor.
c. a chromosomal change.
d. one of the most serious effects of x-ray exposure.
ANS: A
Erythema is reddening and burning of the skin, an early and less serious effect of exposure to
large doses of x-radiation.
10. X-rays have which of the following properties?
a. Electrical and magnetic
, Radiographic Imaging and Exposure 6th Edition Test Bank
b. Electrical and chemical
c. Magnetic and chemical
d. All options are correct.
ANS: A
X-rays, a type of electromagnetic radiation, have both electrical and magnetic properties.
11. The distance between two successive crests of a sine wave is known as:
a. an angstrom.
b. frequency.
c. the Greek letter nu.
d. wavelength
ANS: D
The distance between two successive crests or troughs of a sine wave is the measure of its
wavelength.
12. X-rays used in radiography have wavelengths that are measured in:
a. angstroms.
b. millimeters.
c. centimeters.
d. hertz.
ANS: A
X-rays in the range used in radiography have wavelengths that are so short that they are
measured in angstroms.
13. The frequency of a wave is the number of waves passing a given point per given unit of time.
Frequency is measured in:
a. angstroms.
b. hertz.
c. inches.
d. eV.
ANS: B
The unit of frequency is hertz. The frequency of x-rays in the radiography range varies from
about 3 1019 to 3 1018 Hz.
14. Which of the following is a correct description of the relationship between the wavelength
and frequency of the x-ray photon?
a. Wavelength and frequency are directly proportional.
b. Wavelength and frequency are inversely related by the square root of lambda.
c. Frequency and wavelength are inversely related.
d. Wavelength and frequency have no relationship to each other.
ANS: C
Wavelength and frequency are inversely related; as one increases, the other decreases.
15. A _____ is a small, discrete bundle of energy.
a. phaser
b. quark
c. photon
d. mesion
, Radiographic Imaging and Exposure 6th Edition Test Bank
ANS: C
A photon, or quantum, is a small, discrete bundle of energy.
16. The speed of light is:
a. 3 a. 3 x 108 meters per second and 3 108 miles per second
b. 3 108 meters per second and 186,000 miles per second
c. 3 108 miles per second and 186,000 miles per second
d. All options are correct.
ANS: B
The speed of light can be described as either 3 108 meters per second or 186,000 miles per
second.
17. When first developed, the branch of medicine using x-rays was called:
a. radiology.
b. radiography.
c. roentgenology.
d. imaging sciences.
ANS: C
What we now call radiology was first called roentgenology.
18. The electrical energy applied to an x-ray tube will be transformed to:
a. heat and x-rays
b. heat and light
c. x-rays and light
d. All options are correct.
ANS: A
The electrical energy applied to the x-ray tube will be transformed into heat (primarily) and x-
rays.
19. The Greek symbol lambda () represents the x-ray’s:
a. wavelength.
b. speed.
c. frequency.
d. quantity.
ANS: A
Lambda () is the Greek symbol that represents wavelength.
20. An angstrom (Å) is equal to:
a. 10−1 meter
b. 10−10 meter
c. 10−1 foot
d. 10−10 foot
ANS: B
One angstrom is equal to 10−10 meter.
21. X-rays used in radiography have wavelengths ranging from 0.1 to:
a. 0.01 Å.
b. 1 Å.
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper QuizNursing. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor €17,58. Je zit daarna nergens aan vast.